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FOREWORD 

Two approaches   fo r   t he   mode l ing   o f   t u rbu lence   ex i s t .  One i s  t o  start  
f rom  an   open   h ie rarchy   of   p rof i les   and   h igher   o rder   cor re la t ions .  The o t h e r  
i s  t o   f o r m u l a t e  a c losed   sequence   of   t ranspor t   p rocesses :   evolu t ion   of  mean 
p r o f i l e s ,   e d d y   t r a n s p o r t   c o e f f i c i e n t s   ( v i s c o s i t y ,   d i f f u s i v i t y ,   a n d  damping 
o r  a m p l i f i c a t i o n   r a t e ) ,   a n d   r e l a x a t i o n   o r  memory l o s s   f o r   t h e   a p p r o a c h   o f   t h e  
t r a n s p o r t   c o e f f i c i e n t s   t o   e q u i l i b r i u m .  The former  approach  uses  an  ambiguous 
c l o s u r e ,   o r   a n   a r b i t r a r y   h y p o t h e s i s   o f   t h e   l e n g t h   s c a l e  of mixing. The 
l a t t e r   a p p r o a c h  i s  based on a theo ry   o f   t r anspor t   and   t he   ana lys i s   o f   t he  
s p e c t r a l   s t r u c t u r e   o f   t u r b u l e n c e .  

The a u t h o r   f o l l o w s   t h e   l a t t e r   a p p r o a c h  and  develops a new k i n e t i c  method. 
T h i s   i n t a c t   r e p o r t   i n c l u d e s   r e s e a r c h   r e p o r t e d   q u a r t e r l y   d u r i n g   t h e  f i r s t  yea r  
o f   e f fo r t ,   Sep tember  1981  through  August  1982,  with a second  report  t o  fo l low,  
which w i l l  inc lude   research   for   September  1982 through  August 1983. 
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CHAPTER A: QUARTER ONE 

K i n e t i c  B a s i s  o f  Cascade T r a n s f e r   i n   T u r b u l e n c e  

C.  M. Tchen 

The  Graduate   Center   and  The  Ci ty   Col lege  of   the  Ci ty  

Un ive r s i ty   o f  N e w  York, N.Y. 1 0 0 3 1  

ABSTRACT 

Among t h e   t r a n s p o r t   f u n c t i o n s   w h i c h   c h a r a c t e r i z e   t . h e   e v o l u t i o n  

of: a tu rbu l - en t   spec t rum,   t he   ca scade   t r ans fe r  i s  the   on ly   func -  

t ion   which   descr ibes   the   mode-coubl ing  a s  t h e   r e s u l t   o f   t h e  

nonlinear  hydrodynamic s t a t e  o f   t u rbu lence .  A k i n e t i c   t h e o r y  

combined  with a s c a l i n g   p r o c e d u r e  i s  developed,  t o  d e r i v e  a 

k i n e t i c   e q u a t i o n   o f   v e l o c i t y   d i s t r i b u t i o n   a n d   t h e   t r a n s i t i o n  

e q u a t i o n s  of p a t h   p e r t u r b a t i o n s .   T h e s e   e q u a t i o n s  permit t o  

fo rmula t e  a t r a n s p o r t   t h e o r y  of t u r b u l e n c e  t o  i n v e s t i g a t e   t h e  

e d d y   d i f f u s i v i t y ,   t h e   e d d y   v i s c o s i t y   a n d   t h e   c a s c a d e   t r a n s f e r .  

Ci rcumstances   under   which   the   t ransfer  may appear i n  t h e  form 



of a  direct  cascade or a  reverse cascade are considered. 

I. INTRODUCTION 

The Navier-Stokes  equation of motion, with a  pressure 

gradient  and  a  buoyancy as driving  fields, can be  used to de- 

scribe  the  micro-dynamical  state of turbulance  and to serve as 

the  basis of a  statistical  theory.  But  the  nonlinearities  in 

the  inertia  and  the  driving  fields  will  confront us from  the 

start of the  analysis.  Various  statistical  methods  have  been 

proposed in the  literature  but  were not too successful  in sol- 

ing  the  closure  of  the  hierarchy of equations.  By  changing  the 

velocity  function  into  a  "particle"  velocity as an independent 

random  variable,  the  kinetic  method  is  relieved of this  diffi- 
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c u l t y .  What remains i s  a n o n l i n e a r   i n t e r a c t i o n   b e t w e e n   f l u i d  

and " p a r t i c l e " ,   w i t h  a d i f f u s i v i t y  as  a n   i n t e g r a l   o p e r a t o r  t o  

r e p r e s e n t   t h e  memory i n   t h e  non-Markoff p rocess .  

The k i n e t i c   t h e o r y   o f   t u r b u l e n c e   p r e s e n t s   t h e   f o l l o w i n g  

three   p roblems:  (a )  t h e   k i n e t i c   e q u a t i o n   o f   t u r b u l e n c e ,   ( b )  

t h e   t r a n s p o r t   t h e o r y   o f   t u r b u l e n c e   f o r   t h e   d e t e r m i n a t i o n   o f  

t h e   e d d y   d i f f u s i v i t y ,  (c)  the k i n e t i c   b a s i s   o f   t h e   c a s c a d e  

t r a n s f e r .   I n   t h e   d e r i v a t i o n   o f  a k i n e t i c   e q u a t i o n ,  it is  i m -  

p o r t a n t   n o t  t o  f a l l   i n t o   t h e   B o g o l i u b o v   h i e r a r c h y .  I ts  

c l o s u r e   h a s   n o t   b e e n  a s  s u c c e s s f u l   i n   f l u i d s  as i n   p l a s m a s .  8 . 

T h i s   d i f f u c u l t y  may h a v e   p r e v e n t e d   f u r t h e r   p r o g r e s s   i n   t h e  

k i n e t i c   t h e o r y  of f l u i d   t u r b u l e n c e .  W e  i n t r o d u c e  a " s c a l i n g  

procedure" t o  a v o i d   t h i s   h i e r a r c h y   a n d   t h e   i n v o l v e m e n t   o f  a 

s y s t e m   o f   e q u a t i o n s   o f   s i n g l e t   a n d   p a i r   d i s t r i b u t i o n   f u n c t i o n s .  
~ 
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The eddy  diffusivity  which  characterizes  the  kinetic  equation 

is defined as the  time  integration  of  the  Lagrangian  corre- 

lation of field  fluctuations.  We  develop  a  transport  theory 

for  the  transformation  of  a  Lagrangian  correlation  into  an 

Enlerian  correlation.  This  relationship, or the  time-space 

transformation,  has  attracted  many  investigators by  using  the 

hypotheses of independance . and  normality. The correction 

has  also  been  evaluated. The problem  referred  to  a  dif- 

fusion  model, i.e.  to a  micro-dynamical  state  without  a  driving 

field. This  model  would  exclude  the  more  realistic  aspects of 

turbulence,  as  presented by the  Navier-Stokes  turbulence,  the 

shear  turbulence  and  the  turbulent  motions  in  a  statified  me- 

dium. We feel  it  important  to  find  a  generalization  that  in- 

corporates  the  driving  field.  This  generalization  brings  up 
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new  difficulties.  Our  kinetic  theory  of  turbulent  transport 

helps  in  switching  the  driving f'ield  to a  new  role  of  advection 

in  the  phase  space  and  in  prescribing  probabilities  of  tran- 

sition  to  replace  the  above  hypotheses  of  independence  and 

normality. 

In order  to  be  qualified  as  a  transport  property,  the 

diffusivity  has  to  reachda  statistical  equalibrium  within  a 

finite  time,  called  the  relaxation time. This  finite  time  is 

obtained,  when  a  memory-loss  can  be  found.  The  scaling  pro- 

cedure  selects  and  organizes  the  necessary  mechanism  of  mem- 

ory-loss  by  the  turbulent  dissipations. 

The mode-coupling  governs  the  transfer of modes  across 

the  spectrum  in  both  directions  toward  the  high as well as 

the  low  wavenumbers. It appears  in  the  form of the  moment of 
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the  fluid-particle  interaction, in'analogy with  the  nonlinear 

Landau  damping  in  plasma  turbulence.  Formally,  the  fluid-par- 

ticle  interaction can be  expressed by a  series of high  order 

moments, as we know that a velocity  distribution  could  be  ex- 

panded in this  way. It is nevertheless an insufficient way Of rep- 

resentation. This indicates that, with  these  limitations,  a 

pure  continuum  method on its own may not be  successful  in  ana- 

lyzing  the  mode-coupling,  since it had  failed in describing  the 

Landau  damping. 

11. MICRO-DYNAMICAL  STATE OF TURBULENCE  IN THE CONFIGURATION 

AND PHASE SPACES 

The hydrodynamic,al  equations of the  motion of  an incom- 

pressible  fluid are the  equation  of  momentum 

A- 6 



and   t he   equa t ion   o f   con t inu i ty  

w h e r e   t h e   e v o l u t i o n   o f   t h e   t o t a l   f l u i d   v e l o c i t y  & ( t / x )  under 
" 

t h e   f o r c e  2 [%X) is governed  by a d i f f e r e n t i a l   o p e r a t o r  .. 
6 

and 3 i s  t h e   k i n e m a t i c   v i s c o s i t y   o f   t h e   f l u i d .  The f o r c e  

n 

E .l = - p v p  - 
may be   due   t o   t he   g rad ien t   o f  

f ,  o r  may t a k e  a more  compl 

t u r e   d i f f e r e n c e  and t h e  

6 

p r e s s u r e   i n  a 

( 3 )  

f l u i d   o f   d e n s i t y  

i c a t e  form  involving  the  tempera- 

buoyancy f o r c e  as i n  a s t r a t i -  

f i e d  medium. I n  a l l  c a s e s ,   t h e  force c a n   b e   w r i t t e n   i n   t h e   d i f -  

f e r e n t i a l  form 
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or in the  integral  form 

where 

is  Poisson's  integral  operator,  such  that 

Both  forms  result  from  applying  the  condition of incompress- 

ibility  (lb) upon (la). Here and  in  the  following  the  inte- 

gration is understood  to  extend  from -bo to w . 

The hydrodynamical  equations  (la)  and  (lb) 

can be  considered as describing  the  micro-dynamical  state 

of turbulence  in  the  configuration  space t,x. This can be 
c 

transformed  into  the  phase  space  t,x,v,  by  introducing a 
" 

b - function 
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which satisfies t h e   e q u a t i o n  of e v o l u t i o n  

w i t h  a d i f f e r e n t i a l   o p e r a t o r  

i n   t h e   p h a s e   s p a c e .  The force c a n   a g a i n   b e   w r i t t e n   i n   t h e   i n t e -  

g r a l  form: 

w i t h  Poisson 's  i n t e g r a l   o p e r a t o r  

a n d   t h e   s o u r c e   f u n c t i o n  

i n   t h e   p h a s e   s p a c e .  12 
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The  micro-dynamical  state  in  the  phase  space (7) possesses 

certain  important  advantages  over  that  in  the  configuration 

space  (la)  in  eliminating  the  nonlinearities.  This  is  done 

by  changing  the  role of the  velocity as a  random  function 

into  the role as an independent  random  variable.  By  the  same 

token,  the  inhomogeneous  equation  of  micro-evolution  in  the 

configuration  space  is  transformed  into  a  homogeneous  equation 

in  the  phase  space. We shall  fully  utilize  these  advantages 

in  developing  our  statistical  theory  of  turbulence. Of courss, 

the  micro-dynamics  should  still  keep  a  nonlinear  form  in  the 

phase  space, as seen  from . 3 hf in (7) . Fortunately  the . -  
A 

treatment  of  this  nonlinearity  can  be  delayed  by  considering E - 
to  be  provisionally  known.  After  we  have  closed  the  transport 

equations,  we  can  pick  up  the  nonlinear  relationship  (4a)  which 

then  will  be  in its  uncomplicate  form of a  consititutive  relation. 
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The equivalence  between  the two spaces  (1) and (71 ,  can  be 

e a s i l y   v e r i f i e d  by t a k i n g   t h e  moments 

of ( 7 ) .  I t  is t h e n   s e e n   t h a t   t h e   e q u a t i o n  ( 7 )  i n   t h e   p h a s e  

space   ac tua l ly   co r re sponds   t o   t he   s imu l t aneous   sys t em  o f  dy- 

namical equa t ions  (la) a n d   ( l b )   i n   t h e   c o n f i g u r a t i o n   s p a c e .  

111. THE BBGK HIERARCHY O F  TURBULENCE 

I f  V i s  a s t o c h a s t i c   v a r i a b l e  by t h e   s t o c h a s t i c   b e h a v i o r  
* 

Of cC(t,x) , t h e   f u n c t i o n  ( 6 )  can   be   ca l l ed  a d i s t r i b u t i o n  
/r 

func t ion ,   denoted  by 

r e t a i n i n g   n e v e r t h e l e s s  i t s  s t o c h a s t i c   c h a r a c t e r ,   w i t h  a 
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micro - dynamical state (7). The f u n c t i o n  ( 1 2 )  and 

t h e  e v o l u t i o n  ( 7 )  c o n t a i n   f l u c t u a t i o n s   w i t h  a l l  the minute  

d e t a i l s  which are u n n e c e s s a r y   i n  a s ta t i s t ica l  s tudy .  A 

coarse-gra in ing   procedure   which   e l imina tes  a l l  s t o c h a s t i c  

f l u c t u a t i o n s  i s  the  ensemble  average 

A .(> 
- 

called "g loba l   average" .  A f l u c t u a t i n g   f u n c t i o n   s u b j e c t  t o  

t h i s   a v e r a g e  becomes d e t e r m i n i s t i c ,   e . g .  

and   t he   dev ia t ion   f rom  the   ave rage  i s  t h e   f l u c t u a t i o n  

or ,  i n  terms o f   t h e   o p e r a t o r   n o t a t i o n s ,  

where "1" is  t h e   " u n i t   o p e r a t o r " ,  i s  the average o p e r a t o r ,  

A-12 



and is t h e   f l u c t u a t i o n   o p e r a t o r .  

Upon app ly ing   t he   ave rage   ope ra to r  A' t o  t h e   e q u a t i o n  

o r  

when u s e  i s  made of ( 9 )  and of the n o t a t i o n  

The f u n c t i o n s  (14) and ( 1 7 )  a r e   c a l l e d  the s i n g l e t  and t h e  

d o u b l e t   d i s t r i b u t i o n s ,   r e s p e c t i v e l y .  

I n  (16b) w e  see t h a t   t h e   e v o l u t i o n  of t h e  s i n g l e t  dis-  

t r i b u t i o n   d e p e n d s   o n   t h e   d o u b l e t   d i s t r i b u t i o n ,   a n d   t h a t   t h e  

la t ter  e v o l u t i o n  w i l l  expectedly  depends  on the t r i p l e t  

A-13 
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d i s , t r i b u t i o n  

and   the   sequence   cont inues  t o  form t h e  BBGK h ie ra rchy .   Th i s  

h i e r a r c h y  i s  w e l l  known i n   t h e   k i n e t i c   t h e o r y   o f   p l a s m a   t u r -  

bulence,   and i s  s e e n   h e r e   t o   r e a p p e a r   i n   f l u i d   t u r b u l e n c e  

w i t h   t h e   d i f f e r e n c e  that h(x,v) i s  d e f i n e d   b y   ( l o b )   i n   a n  
0 -  

i n c o m p r e s s i b l e   f l u i d ,   w h i l e  A ( x ,  v)= / i n   p l a s m a s .  1 - 4 , 8  
-" 

The c l o s u r e   o f   t h e   h i e r a r c h y   c o n s t i t u t e s  a d i f f i c u l t  

problem. It has  been  a t tempted by f i n d i n g  a small parameter  

i n   p l a smas ,   bu t   such  a parameter  i s  l a c k i n g   i n   f l u i d s .  This  

may e x p l a i n  why so l i t t l e  p rogres s  has been made i n   f l u i d  

tu rbu lence  by t h e   k i n e t i c   a p p r o a c h .  The a n a l y s i s  0-f t he   spec -  

t r a l  s t r u c t u r e  of tu rbu lence   r equ i r e s   t he   Four i e r   t r ans fo rm-  

a t i o n  of a c o r r e l a t i o n   f u n c t i o n ,   a n d   t h e r e f o r e   t h e   s e c o n d  
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moment  of  the  doublet  distribution.  Thus  this  kinetic  problem 

calls  for  the  determination  of  both  distribution  functions.  This 

obviously  would  pose  a  tremendous  task.  We  shall  devise 

a  kinetic  method,  in  which we can  avoid  the BBGK hierarchy  and 

the  doublet  distribution  function.  To  this  end, we shall  resort 

to the  scaling  procedure of fluctuations,  which we shall  de- 

scribe  in  the  following. 

IV. THE SCALING OF FLUCTUATIONS 

The BBGK hierarchy  which  begins  with  the  singlet  distri- 

bution (16) does  not give any  statistical  information  unless 

the  doubiet  distribution  is  known.  This  means  that 

a  minimum  of  two  equations of the  closed  hierarchy  will  be 
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needed  to  describe the  fluctuations  statistically. In order 

to  avoid  the BBGK hierarchy  completely, we shall  scale  the 

fluctuation 

into  a  macro-group &I"' and  a  micro-group e'  . 
.c - 

The  scaling  is  performed  by  writing  the  fluctuation  op- 

erator 

x = A'")+ A /  

A(" 1 into  two  components , A ' , which  select  the  macro- 

group  and  the  micro-group,  respectively,  and  are  called 

"scaling  operators".  Since  (15bZ  is  known as the  "Reynolds 

decomposition"  in  turbulence, we may  consider  the  scaling 

(20a) as a simple  extension of this  decomposition. 
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For  the  sake  of  convenience, we introduce 

A, = x + AC"/ 

so that 

The two  groups E(OJ and E' have  their  durations  of - u 

correlation rc (0) and T,' , with  the  inequalities 

stating  that  the  micro-group E" is  more  random  than  the - 
macro-group .lo' . Their  respective  portions of the  energy 

L 

are  clearly  separated  by  the  wavenumber  variable I f  in  the 

spectral  distribution S(k)  of E - fluctuations,  although - 

the  individual  groups  and E' may  overlap  in  their - 
Fourier  compositions.  Clearly,  the  two  portions  add  to 
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Similarly,  we  scale  the  velocity  fluctuation 

L L 

into a macro-velocity Uco' and  a  micro-velocity U' of 
LC 

energies 

in  the  spectral  distribution f(k) of U - fluctuations. 
c 

The  two  portions  also  add  to 

The  same  scaling  applies  to  the  distribution  function 

p(t x, v )  in  the  superposition 
- c  

of a macro-distribution f"' and a  micro-distribution {' . 

It is to be  remarked  that  the  scaling  permits  the 
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derivation  of  the  spectral  distributions  by  simply 

differenting  (22a)  and  (24a)  with  respect  to x , while  this 

was  not  the  case  with  the  non-scaled  energies (22b) and  (24b). 

Thus  our  statistical  problem  amounts to finding  a  kin- 

etic  equation  of  the  scaled  singlet  distribution only,instead 

of both  the  singlet  and  the  doublet  distributions  in  the  un- 

scaled  treatment of the BBGK hierarchy. 

It is  to  be  stipulated  that  the  decomposition  into  the 

scaled  groups  (20)  differs from the  decomposition  into  the 

Fourier  components or a group of such  components. The  latter 

decomposition  is  a  mathematical  transformation  without  adding 

any  physical conceptto the  treatment,  while  the  former  de- 

composition  injects a scaling  procedure of coarse-graining  to 

the  stochastic  process  by  the  operator A'") or the  operator 

A-19 



A ’ = X - A ( O J  . Consequently,  the  scaling  procedure  dis- 

tinguishes  between  a  macro-process  representative  of  the  evol- 

ution  of  a  macro-field  and  a  micro-process  representative of 

the  transport  properties as shaped  by  the  more  random  micro- 

fluctuations  in  the  medium  in  which  the  macro-field  is  propa- 

gating.  Well  defined  probabilities of transition,  that  are 

self-consistent  with  the  once  given  micro-dynamical  state  of 

turbulence,  will  define  the  scaling  operators A“ and A’ . 

V. KINETIC  EQUATION OF TURBULENCE 

The  micro-dynamical  state of turbulence is described by 

the  dynamical  state (7) in  the  phase  space. We apply  the  scaling 

operators p’” and A ‘ and decompose (7) into  the  system 
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which describes  the  evolution  of  the  macro-distribution 

under  the  statistical  effects of the  more  random  micro-fluc- 

tuations E'! '  , while  the f ' fluctuations  are  ex- 
& 

cited  by  the  gradients  of  the  mean  and  the  macro-distributions, 

according to  (26 1. All  operators  including the scaling  oper- 

ators A'"), 4 '  and  the  differential  operator L refer  to  all 

functions  which  follow them. 

If we  disregard  the  group-coupling  between f'O'and -f ' 

and  merely  express E'  in  terms of e' according  to (9) by 
ub- 

A '  , w e  would  again  fall  into  the BBGK hierarchy in the  form: 

with 
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by definition of the  scaled  doublet  distribution  function. 

In order  to  avoid  this  hierarchy  which is equally  undesir- 

able, we call on the  group-coupling  between the two  equations 

(26a)  and  (26b). For  this  purpose,  we  rewrite  (26b)  in  the  form 

by  the use  of (20cl . We integrate  to  find 
A 

{ Tc x, v)  E A "p (t, x, v )  
" " 

z = t  a t :  

along  the  trajectory of the  evolution Of f?t.X,v) in  the 
" 

phase  space,  and  the  right  hand  side  is  a  driving  field.  The 

solution  (28)  is  the  time  integration of the  driving  field  in 
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the  Lagrangian  representation  denoted by 

Here x(t-t) is the  position  along  the  trajectory at the - 
time t"C , when it is known  that at time t, the  position is 

x  and  the  velocity is v . The trajectory is governed by: - - 

where V(tl) is an intermediate  variable  in - 
2 d  x(tl)  (31b) 
c 

= E(tl) . 
dt12 

L 

The dynamical  equations  (31)  Foverninr  the  trajectory  are  called 

the  micro-dynamical  equations of transition. The operator 

is called  the  propagator, or "Lagrangian  operator". The last 

The stress in the  phase s p a c e - 4 ~  thus  found  to be 
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where 

is  the  eddy  diffusivity.  Hence,  upon  substituting  the  stress 

into  the  equation  (26a) of macro-evolution, we obtain: 

In  the  evolution ofthe macro-distribution ( 3 4 )  of  scale  t , we  have 

and a  fortiori 

t 7) t,' 

from Fl), so that D' from  (331  becomes a  large-time  diffusivity 
I 
4 

t- a3 
D' = A")L d t  € yc x) U(t, t-t) I! '(t-t) , (37) - - . . c  .5 - 

that  asymptotically  will  take a deterministic  form: 
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on   accoun t   o f   t he   sma l l   co r re l a t ion  time (361 and   t he   de t e r -  

m i n i s t i c   c h a r a c t e r   ( 2 2 a ) .  Under t h i s   c i r c u m s t a n c e ,  w e  reduce 

(34) t o   t h e   f o l l o w i n g   k i n e t i c   e q u a t i o n  

I t  has   the   form of a Fokker-Planck  equat ion,   containing a 

memory as desc r ibed  by t h e   d i f f u s i v i t y   o p e r a t o r  D' 

t he   g roup-coup l ing   and   t he   s ca l ing   p rocedure ,   t he   k ine t i c  

equation  (391 i s  e x p l i c i t   i n  f"' , avo id ing   t he  BBGK h i e ra rchy .  

KINETIC THEORY OF TRANSITION 

The t r a n s p o r t   t h e o r y   f o r   t h e   d e t e r m i n a t i o n   o f   t h e   d i f f u s i -  

v i t y  ( 3 8 )  r e q u i r e s   t h e   e x a m i n a t i o n   o f   t h e   L a g r a n g i a n   c o r r e l a t i o n  
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The t r a j e c t o r y   i n  t h e  phase   space  

c o n t a i n s  a f l u c t u a t i n g   p a t h  p(,) i n   t h e   r e t r o g r a d e   t r a n -  - 
s i t i o n ,  i .e.  i n  a time i n t e r v a l  "C , and is s e l f - c o n s i s t e n t  

w i t h   t h e  same micro-dynamical s t a t e  (31)  as t h a t  of t h e   k i n e t i c  

equa t ion  of v e l o c i t y   d i s t r i b u t i o n  ( 3 9 2 .  

A 

The f l u c t u a t i n g   p a t h  t(-Z) is  a random f u n c t i o n ,  fo r  
u 

which w e  w i l l  deve lop  a k i n e t i c   t h e o r y  of t r a n s i t i o n .  

The f i r s t  of the   mic ro -dynamica l   equa t ion   o f   t r ans i t i on  

( 3 1 )   c a n   b e   w r i t t e n   i n   t h e  form 

c a l l e d  t h e  "master e q u a t i o n   o f   t r a n s i t i o n " ,  where t h e  veloci ty  

n v(-r) has been  def ined  by  (31)  , and 
.4. 
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' is a  probability of transition  in  the  microscopic  description. 

It is  a  function  of  the  random  variable 1 and  has  the 

moments : 

It is  not  difficult to verify, by means of the  moments ( 4 4 )  

that  the  master  equation ( 4 2 )  will  indeed  reproduce  the  micro- 

dynamical  equations (31) . 

We apply  the  scalings F, A. 4'  to the  master 

equation ( 4 2 )  and  derive  the  following  kinetic  equations of 

transition 

" 

and  the  probability of transition in the  micro-scale 
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where LA is  a  drift  ve1ocit.y.  The  details  of  derivation, 
- 
4 

which  are  similar  to  those  used  in  the  derivation of the  kin- 

etic  euuation of velocity.  distribution,  will  not  be  repeated 

here. 

The  coefficient  of  diffusion, as defined  bv 

is  calculated  from  the  micro-dynamics (31) of the  path  fluc- 

tuation,  written  in  the  new  form : 

We  find  the  dispersion 

and the  diffusion  coefficient 

By scalings, we have: 
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The  kinetic  equation of transition.,  in  the  non-Markoff 

master  equation ( 4 2 )  in  self-consistency  with  the  originally 

stated  micro-dynamics of turbulence, in  the  form (11, (31), 

or (49), and  therefore  should  not  be  confounded  with  the  com- 

monly  known  transition  equation  which  was  derived  phenomen- 

ologically  in  the  hypotheses of a Markoff  process. l3 Note 

also  that  the  kinetic  equation of transition  determines  a 

retroqrade  transition of nath 
..I 
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V I .  TRANSPORT THEORY OF  DIFFUSIVITY 

Bv t he   Four i e r   decomnos i t ion ,  w e  t ransform  the   formula  

(38)  of d i f f u s i v i t y   i n t o  

wi th  t h e   u s e  of ( 4 0 )  and (41). The d e t a i l s   o f   t h e   t r a n s f o r m -  

a t i o n  are e lementarv   and   have   been   omi t ted .   For   the  sake 

of a b b r e v i a t i o n ,  w e  h a v e   i n t r o d u c e d   t h e   F o u r i e r   f u n c t i o n  

and t h e  f l u c t u a t i n q   i n t e n s i t v  

of s p e c t r a l   t e n s o r  

When t h e  Four i e r   t r ans fo rm is  t r u n c a t e d   w i t h i n  a l e n q t h   i n t e r -  

d 
v a l  2 , t h e   t r u n c a t i o n   f a c t o r  is Pshh) ,where 4 is 
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t h e  number of dimensions.  

I t  is  to  be noted t ha t  the i n t e g r a l  

A .  

w i t h  a p e r t u r b e d   p a t h  A(-z), c o n s t i t u t e s  a Lagrangian corre- 
L. 

I 

l a t i o n  of the E - f ie ld  f l u c t u a t i o n s ,  w h i l e  t h e   i n t e g r a l  - 

w i t h o u t   p a t h   p e r t u r b a t i o n s  is t h e   E u l e r i a n   c o r r e l a t i o n .  Hence 

t h e  d i s t i n c t i o n   a n d  the r e l a t i o n   b e t w e e n   t h e  t w o  c o r r e l a t i o n s  

reside i n  the p a t h   p e r t u r b a t i o n s   i n  t h e  F o u r i e r   f u n c t i o n  

c 

T h i s  f u n c t i o n   c a n  be decomposed i n t o  t w o  p a r t s  as  
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s i n c e  /lo + A  ’ , w i t h  

For t h e  a n a l y s i s  of the first p a r t   ( 5 6 a ) ,  w e  c a l c u l a t e :  

from t h e  Fourier t r a n s f o r m a t i o n  of t h e  k i n e t i c   e q u a t i o n s  of 

t r a n s i t i o n   ( 4 5 )  - ( 4 7 ) ,  so t h a t  w e  f i n d  

w i t h   t h e   n o t a t i o n s :  
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The second  part  (56b)  contains  the  fluctuations  already 

found  in (571, and can thus  be  written  in  the form: 

The degenerated  function 

can  be  considered as a  time-integrated  flux, so that, by com- 

bining  (601  and  (61), we obtain 

with 

in  the  transport of s ’  of a  path &)and a  diffusivity 3 . 
Y 

-4 
4 

The results ( 5 8 )  and  (62)  for  the  two  parts of the  Fourier 

function (55b1 add to 
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and  yield  a  diffusivity which  can  be  written in  the  form: 

This  expresses  that  the  diffusivity is endowed  by  the  spectral 

tensor (drb')> and  approaches  its  equilibrium  at  a  relaxation 
t -  

time 

where and 5 ' have  been  defined  by  (59)  and  (63) , re- 
9 

spectively. 

Note  that,  since  the  relaxation  time  (66)  contains 3' 

in  the  integrand,  through 5 ' and k/ from  (63) , (59) and D 

(51b) , the  form  (65) is  the  integral  equation  for  the  deter- 

mination of D' . 
.5. 
-u 

We  conclude  that  the  Lagrangian  correlation  of  the 

' 
E -  field  fluctuations  is  expressed  in  terms of the  spectral 
.L 
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function by the  following  formula: 

with 

from  (64) - (66). 

VII.  KINETIC  BASIS OF THE  CASCADE  TRANSFER 

, We  write  the  kinetic  equation  of  velocity  distribution 

(34) in the  following  explicit  form: 

We take  the  moment of (68). The zeroth  moment  gives  the 

equation of continuity 
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a n d   t h e   f i r s t  moment g i v e s   t h e   e q u a t i o n   o f  momentum i n  t h e  

form: 

w i t h  a c o l l i s i o n l e s s   i n t e r a c t i o n  

The advect ion 
IO) - 

t h e   p r o d u c t i o n  v(c M'?) I 

i ' d  
(0) (0) 

d L d  
t h e   i n e r t i a  A V (u.. LC . ) I the   viscous  damping Y I7 &.. 2 ( 0 )  

i 

a n d   t h e   d r i v i n g   f i e l d  E'"' are a l l   t h e   r e g u l a r  terms recog- 
C' 

n i z a b l e  by i so la t ing   the   macro-group  f rom  the   hydrodynamica l  

equa t ion   ( l a )   wh ich  describes the   mic ro -dynamica l   s t a t e   o f   t u r -  

bulence.  The i n t e r a c t i o n  i s  new, and   can   be   ve r i f i ed   t o  

v a n i s h   i f   t h e  memory should   be   absent .   S ince  J" can  be 
L' 

i d e n t i f i e d   a s  a scaled  Reynolds  stress f romthe   mic ro - f lux   o f  

momentum, i .e .  
(71b)  
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the memory is i n d e e d   e s s e n t i a l   t o   t u r b u l e n c e .  

From the   mix ing- length   hypothes is ,  the  momentum f lux   o f  

t h e  grad ien t  type ,  i .e.  

h a s   b e e n   e s t a b l i s h e d ,   g i v i n g   a n   i n t e r a c t i o n   i n  the form: 

The t r a n s p o r t  coefficient K' is called the eddy   v i scos i ty .  

The comparison  between  the  above t w o  forms of i n t e r a c t i o n  

s u g g e s t s  a means of i s o l a t i n g  t h i s  eddy v i s c o s i t y ,   p r o v i d e d  

the t r a n s p o r t   o f   t h e   g r a d i e n t   t y p e  (72) i s  v a l i d .  On t h e  con- 

t r a r y ,  ,when t h e   g r a d i e n t   t r a n s p o r t  i s  n o t   v a l i d ,  as is t h e  

case w i t h   c e r t a i n  s t ra t i f ied media, the  k i n e t i c   i n t e r a c t i o n  

( 7 0 )  c o u l d   d e t e r m i n e   t h e   c o r r e c t   t y p e  of t r a n s p o r t   a p p r o p r i a t e  

t o  the  problem. 

I 



d e s c r i b i n g  the rate of change of t h e   k i n e t i c   e n e r g y ,  as governed 

by t h e   f o l l o w i n g   t r a n s p o r t   f u n c t i o n s :  

p roduc t ion  

coup l ing  

cascade  
t r a n s f e r  

v i s c o u s  
d i s s i p a t i o n  

f l u x   t r a n s p o r t  

Among t h e s e   t r a n s p o r t   f u n c t i o n s ,   o n l y   t h e   m o d e - c o u p l i n g  

f u n c t i o n ,  o r  t h e   c a s c a d e   t r a n s f e r   f u n c t i o n  
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possesses  a  structure  that  is  characteristically  kinetic, as 

involving  the  correlation 

between  the  fluid  velocity &lo' and i 

( 7 7 )  

the  singlet  distribution 

$' . This coupling  is  analogous to the  fluid-particle 

interaction  which was considered to  be  the origin of the  non- 

linear  Landau  damping  in  plasma  turbulence. 

Lagrangian  correlation  into an Eulerian  correlation  (or  its 

Fourier  transforml. We apply  the  same rule for  the  Lagrangian 

correlation (771,  and  obtain: 

where is defined by (67b). . 

Now when  this  Lagrangian  correlation is substituted  into 
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( 7 6 ) ,  w e  f i n d  the t r a n s f e r   f u n c t i o n   i n   t h e  form: 

N o t i n g   t h a t  Dy] is a n   o p e r a t o r  of i n t e g r a t i o n s  - 
.c 

w i t h  r e s p e c t  t o  k '  and Z , as prescr ibed   by   (65)   and  ( 6 6 )  
a 

r e s p e c t i v e l y ,  w e  can  rewrite ( 7 9 )   i n   t h e   e x p l i c i t   f o r m ,  as 

follows: 

VIII- CONCLUSIONS 

By means  of a s c a l i n g   p r o c e d u r e ,  w e  have  developed a k i n e t i c  

equa t ion  of turbulence   and  a t r a n s p o r t   t h e o r y  

of e d d y   d i f f u s i v i t y .  The t r a n s p o r t   t h e o r y  is based 

upon t h e   t r a n s f o r m a t i o n  of a L a g r a n g i a n   c o r r e l a t i o n   i n t o  an 
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Eulerian  correlation  by  means  of  transition  probabilities 

which  we  have  found  from  a  kinetic  theory  of  transition. 

The transfer  function  describes  the  mode-coupling,  or  the 

cascade  transfer  across  the  spectrum. It appears  in  theaform 

of a fluid-particle,interaction, and  is  therefore  a  kinetic 

phenomenon  like  the  Landau  damping. A memory  should  exist 

in this  interaction  and is  generated  by  the  Lagrangian  corre- 

lation  between  the  fluid  velocity  and  the  "particle"  velocity 

distribution.  However,  a  memory-loss  should  be  present  for  a 

collisionless  dissipation to  yield a  finite  relaxation  time. 

A preliminary  examination of the  expression  of  the  cascade 

transfer  reveals  that  the  cascade  process  can  persist  in  the 

direction of high  wavenumbers, so that  either a transport  along 

the  gratient, or a collisionless  dissipation in the explicit 
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form of a  Landau  damping can appear.  With  this  distinction, 

an  eddy  viscosity  or  a rate'coefficient of Landau  damping can 

be  separately  analyzed. In other  circumstances, e.g. in  the 

atmospheric  turbulence  with  a  stable  stratification,  a  reverse 

cascade  may  appear,  involving  a  transport  counter  to  the  gradi- 

15 
ent. The  reversal  is  associated  with  the "gap" phenomenon. 

An  analytical  expression of the  cascade  transfer of this  kind 

will  clarify  the  gap  phenomenon  and  the  concept of "negative 

viscosity". 
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CHAPTER B: QUARTER TWO 

Kinetic Theory  of Turbulent  Transfer  with Double  Memory-Loss 

C.M. Ochen 

The Graduate  Center and The City  College o f  

The City  University of New York, N . Y .  10031 

Abstract 

The  transfer  function  governs  the  mode-coupling  in 

strong  turbulence.  It  is  investigated  here  by  means  of  a 

kinetic  equation  of  turbulence,  in  consistency  with  the 

hydrodyxiamical system  that  describes  the  micro-dynamical 

state  of  turbulence.  The  equation of spectral  balance  is 

obtained  by  taking  the  moment  of  the  scaled  kinetic 

equation  for  the  one-point  distribution  without  the  need 

of  the  two-point  distribution.  It  is  found  that  the  trans- 

fer  function  is  governed  by  two  Lagrangian  correlation 

functions  and  therefore  by  two  memory-loss  functions. 

The  first  correlation relates  to  two  field  fluctuations 

and  finds  the  diffusivity  as  an  integral  operator.  This 

perpetuates  the  memory  to  the  second  correlation  which 

contains  its own memory  from  the  fluctuations  of  velocity 

and  distribbtion of velocities.  This  correlation  is  known 

as the "wave-particle  interaction"  in  plasmas.  The  com- 

petition  between  the  two  memory-loss  functions  and  the 

cut-off of the  memory  form  the  essential  basis  for  the 

closure  of  turbulence.  We  find two forms of transfer 

functions,  for  small  and  large  scales,  respectively.  The 
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first  form  belongs  to  the  gradient  transport  and  isolates 

an  eddy  viscosity. The  second  form  belongs  to  a  collision- 

less  damping  without  gradient,  and  isolates  a  rate  coef- 

ficient of collisionless  damping. The transfer  function 

for  the  large  wavenumbers  is  applied  to  the  derivation of 

the  Kolmogoroff  law of turbulence  with  the  analytical de- 

termination of the  numerical  coefficient. 

I. INTRODUCTION 

The  micro-dynamical  state  of  fluid  turbulence  is 

usually  described  by  a  hydrodynamical system, for  example 

the  Navier-Stokes  equation of motion. This  equation  is 

nonlinear  in  the  velocity  function  and  is  inhomogeneous 

by  having  a  driving  field  which  may  be the  pressure 

gradient.  On the  other hand, in  the  kinetic  representation 

the  velocity  is an independent  variable  and  does  not  cause 

a  nonlinearity,  while  the  driving  field  forms  a  part of 

the  advection  and  does  not  warrant  an  inhomogeneous 

equation. It is  known  that  a  homogeneous  equation  for  the 

micro-dynamical  state of turbulence  can  more  explicitly 

give an analytical  specification of the path  perturbations, 

since  the  homogeneous  equation  contains  a  detailed  differ- 

ential  operator of perturbations  and  therefore  will  yield 

by  inversion  an  exact  evolution  operator. 

Unlike  the  kinetic  theory of gases, the kinetic  theory 

of the  spectral  structure of turbulence  usually  requires a 
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two-point  distribution  function,  since  the  spectral  func- 

tion  is  the  Fourier  transform  of  the  two-point  correla- 

tion  function of velocity  fluctuations.  We  see  that  such  a 

procedurewould  involve  a  hierarchy  in  the  form  of  the 

Bogoliubov  hierarchy . In order  to  confine  ourselves  to 
a  single  kinetic  equation of one-point  distribution  and 

thus  avoid  the  Bogoliubov  hierarchy, we introduce  a  pro- 

cedure  of  scaling  into  a  mean  group  and  groups  of  macro- 

and  micro-fluctuations,  repr-esenting  three  processes  of 

transport:  macro-evolution,  micro-transport  property,  and 

relaxation8 ". These  groups  are  in  their  increasing  order 

of  incoherence. The  relaxation  process,  as  the  most  ran- 

dom  group,  provides  a  memory-loss by  path  perturbations. 

Thus  the  closure  lies in the  memory-loss  that  is  neces- 

sary  for the  transport  property  to  reach  its  equilibrium, 

rather than-in closing  the  Reynolds  stresses or other 

higher  order  transport  functions. 

1-7  

Our  first  task  is to derive  a  macro-kinetic  equation, 

not  through  the  closure  of  the  Bogoliubov  hierarchy,  but 

by  using  a  scaling  procedure. The result is a  macro-kinetic 

equation  with a diffusivity  serving as an integral  operator, 

so that  the  memory can be  extended  to  the  distribution 

function  that  follows.  Consequently,  the  kinetic  equation 

takes  the  form of a  mixture of the Fokker-Planck  differ- 

ential  equation  and  the  Boltzmann  integral  equation  (Sec- 

tion  11) . 
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The kinetic  equation of one-point  macro-distribution 

can  be  transformed  into  a  continuum  representation  by 

means  of  the  moment  method,  and  subsequently,  upon  multi- 

plication by a  macro-velocity,  can  derive  an  energy  equa- 

tion  for  the  spectral  balance of turbulence,  bypassing 

the  need  for  the  two-point  distribution  function.  Since 

the  diffusivity  acts  as  an  operator,  the  distribution 

function  that  follows  takes  a  Lagrangian form, and, to- 

gether  with  the  macro-velocity,  will  form  a  Lagrangian 

correlation.  In  this way, a  transfer  function  is  obtain- 

ed, describing  the  mode-coupling  across  the  spectrum, 

and is founded on two  Lagrangian  correlations:  one  from 

the  field  fluctuations  for  forming  the  diffusivity, and 

the  other  from  the  macro-distribution  for  describing  the 

"particle-fluid''  interaction.  Since  each  Lagrangian  cor- 

relation  presents  a  memory loss, the transfer  function 

possesses  two  memory-loss  functions,  the  analysis of 

which  must be  based on the  Lagrangian-Eulerian  transform- 

ation.  The  said  transformation  is  in the phase-space  and 

differs  from an analogous  for dif- 

fusion in the  configuration  space  (Section  111).  The  com- 

petitive  interplay  of  the  two  memory-loss  functions  pro- 

vides  us  with  a  means of closure  for the derivation of 

the transfer  function in the  form of a gradient  transport 

or in the  form of a collisionless damping.without a  macro- 

scopic  gradient  (Section  IV). In this  manner, we are  able 
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to  isolate an eddy  viscosity  and  a  rate of collisionless 

damping  (Section V) . 
Finally, we test  the  applicability  of our.kinetic 

method to  the  inertia  turbulence.  We  derive  analytically 

the  Kolmogoroff  law " and  its  numerical  coefficient 

(Section VI) . 

11. THE  SCALED  KINETIC  EQUATION OF TURBULENCE 

The hydrodynamical  equations 

(a, + 6 - v  - vv2); = E, v-u = 0 , A 

" -  - -4 r e  

which  describe  the  micro-dynamical  state  of  turbulence, 

govern  the  total  velocity  as  driven by a  field E. This 
field  may  consist  of  the  pressure  gradient, the buoyancy, 

or  any  other  fluctuating  forces,  including  the  random 

noise. 

- .* 

By  the  Reynolds  decomposition, we can  separate  the 

total  field 

into  a  mean  field <E> I E and  a  fluctuation E. In an  analo- 
gous way, we can  decompose  the  field  fluctuation 

L. c - 
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into  a  macro-field E ( O )  and  a  micro-field E', with  un- 

equal  correlation  times 
.* v 

in  the  increasing  order of incoherence. The scaling  can 

be  made  by  means  of  the  operators 

which  select  the.  deterministic  "global  average",  the  macro- 

and  the  micro-fluctuations,  respectively. The macro-fluc- 

tuation.evolves in a  medium  possessing a transport  prop- 

erty  that is carried  by the  micro-field  fluctuations. 

Finally,  a  relaxation is needed  for  the  transport  property 

to  approach  its  equilibrium.  This  is  made  possible  by  a 

memory-loss. Thus  the  three  transport  processes  of  evolu- 

tion, transport  property,  and  relaxation  form  our  main 

framework  for  the  closure  of  turbulence.  For  the  sake of 

convenience, we introduce  an  operator 

to represent  an  "accumalted  macro-group" of fluctuating 

field 

and  path 
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It  is  to  be  noted  that  the  averages  by A, A. are  en- 

semble  averages  as  specified  by  appropriate  distribution 

functions. The groups  as  scaled by x, A ( O ' A ' ,  , only  dis- 

tinguish  themselves by their  degree of incoherence,  and 

therefore  may  overlap in their  spectral  distributions 

with  respect  to  frequency  and  wavenumber. 

The  deterministic  functions,  which  result  from  the 

global  averages  of  the  scaled  fluctuating  functions,  inhe- 

rit  the  same  "rank"  notations 

I 

of  the  originating  scaled  fluctuating  functions. 

The hydrodynamical  system of equations  describing  the 

micro-dynamical  state of turbulence is usually  complicated 

by the  velocity  function  and  the  driving  force  which  make 

the  equations  nonlinear  and  inhomogeneous.  In  order  to 

avoid  these  difficulties,  we  adopt the kinetic  approach. 

This  transforms  the  velocity  function  into  an  independent 

variable,  and  incorporates  the  driving  force  into  the ad- 

vection  in the phase  space. This procedure  renders  the 

equations  homogeneous  and  eliminates  most  nonlinearities, 

except  the one representing the coupling  between  the  driving 

field  and  the  distribution  function in the  so-called  "wave- 

particle"  interaction. This last  nonlinearity  does  not  need 
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our immediate  attention.  We  may  postpone  after  the  closure 

and  solve  by an equation of state  relating the fluctua- 

tions  of field  and  velocity. These  advantages  will pro- 

vide  us  with  a  simpler  statistical  basis  of  closure. 

As the point of departure, we write the following  macro- 

kinetic  equation : 8 

where ?(t,x,v)  and f"'(t,x,v) are  the  mean and  the  macro- 

distributions,  respectively,  and 
* -  " 

The  eddy  diffusivity is 

or, in  the  simplified form: 

where  the  Lagrangian  representation of the  micro-field is 

simply  written  as 
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and  the  Eulerian  field at  time  t is written  as 

since  x(t) = x  in E'(t,x(t)) = E'(t) . The propagator, or the 
Lagrangian  evolution  operator  U(t,t-T)  describes  the  evolu- 

tion  of  the  perturbed  trajectory. The diffusivity  may  serve 

the  role of an integral  operator  if it is written  as D'{}. 

rr ,% .c L. + 

- 

111. THE  LAGRANGIAN-EULERIAN  TRANSFORMATION I N  THE  PHASE  SPACE. 

THE  LOSS  AND  CUTOFF OF THE  MEMORY 

By means  of  the  Fourier  transformation  in  k-space, 
?r 

the  Lagrangian  correlation  can  be  written  in  the  following 

form: 

It  contains  the  spectral  function 

giving  the  mean  intensity 

where 
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is  a  factor of Fourier  truncation  within  a  length  interval 

2X in  d  dimensions. The Fourier  transformation  has  the 

Fourier  kernels 

The  frequency w = wk (k") is a  function of k?' as  determined 
by a  certain  dispersion  relation,  for  example,  reflecting 

k 

the  interaction  between  internal  gravity  wave  and  turbu- 

lence . The perturbed  path ( - T )  forms  a  fluctuating 

orbit  function  e ik" ,,, . Since we can decompose  the  path 
15-17 

.y 

i into  groups 
.y 

we  find  the  corresponding  "scaled  orbit  functions", or 

briefly,  the  "orbit  components": 

On  a  separate  occasion,  we  have  developed  a  theory  of 

transition  probability  for  the  orbital  motion  and  deter- 

mined  the  following  correlation  function  to  be 18-20. 

The  first  two  factors on the  right-hand  side  represent  the 

factorization  when the fluctuating  functions 
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are  ,mutually  independent I and h' is a  correction  factor 5 
when the hypothesis of independence  does  not  hold. 

With the  substitution of (10)  into ( 6 1 ,  we find  that 

the Lagrangian  correlation 

has, in the  Fourier  integral,  a  product of the spectral 

distribution <SI( k")) with  the  orbit  function 
e -  

The components  may form  the  groups 

representing the streaming by  v,ii,z  and the  memory-loss 

by the  macro- and  micro-fluctuations,  respectively. For 
- " 

the  sake of convenience, we write  the  micro-component 

that incorporates  the  inter-dependence  between the fluc- 

tuating  intensity s' and  the  path  fluctuations II'; also 

we write  the  accumulated  macro-component as 
z Y 



The function M will be  called  the  "memory-loss  function". 

In  particular,  if  the  streaming  predominates,  we  can 

degenerate ( 1  3a)  into 

so that  the  Lagrangian  correlation (12 )  is reduced  to  the 

Eulerian  correlation by  the  relation: 

This  is  the  well-known  relation  under  the  hypothesis of 

"frozen  turbulence",  and  is  valid  in  weak  turbulence.  In 

the  general  case  where  the  turbulence is not  frozen,  we 

have  the  relationship 

between  the  two  correlations  by  using W'I) as  an  integral 

operator.  Note  that 
E 

Q 

since M < - 1 .  



. 
In  the  derivation of a  transport  property or a  trans- 

port  function in equilibrium  upon  the  r-integration of a 

Lagrangian  correlation, it is obvious  that  the  memory 

should  not  perpetuate  indefinitely  but  should  ultimately 

be  cut off, as  a  requirement of the  closure.  We  see  that 

the  memory  function M consists of two components:  The 

macro-component  h ( O )  incorporates  the  strength  and  the de- 

cay of the  memory. The micro-component h:, as belonging to 

the  most  random  group  at  the  tail  of  the  memory-chain,  has 

the  function  of  cutting  off  the  memory as the  result of 

the  diffusion by the micro-fluctuations. 

Recall  that  the  diffusions by E- and  E-fluctuations 
.y 

are  governed  by the  dynamical  equations  of  the  orbital 

motions 

4 - A 
" L C  
4t I* 

(1 6a) 

and 

respectively. 

We  perform  the  scalings  and  the  ensemble  averages by 

means  of  the  scaled  probabilities  of  transition 18 ,19  

The dynamical  system  (16b)  gives  the  paths 
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and  a  macro-variance 

I 

belonging  to  the  unmatured  diffusion,  or  small-time  diffu- 

sion. 

The mizro-variance can be written  in  the  form 

belonging to the  matured  diffusion, or large-time  diffu- 

sion  with  a  transport  coefficient 

Two forms  of  propagators U ( T  ,T - T') may  be  visualized, de- 

pending on the  orbit  evolution,  whether it be  perturbed  by 

the  u-fluctuations or by the  E-fluctuations,  giving  an ed- 

dy  diffusivity or an eddy  viscosity,  respectively.  Alter- 

natively,  the  micro-variance in the  diffusion by g-fluctua- 

tions  following  (16b)  is  expected  to  deliver an eddy vis- 

'* IC 

cosity too, in  an  indirect  way  through D' Y and  after  the 

closure.  For  this  reason,  we  shall  assume  a  memory  cut-off 

and  a  closure by  (18a). A rough  evaluation of K' could  be 

made by  relating it to the  noise  spectrum of the  Brownian 

problem, or to  the  diffusion  model (16a).  But  from a  real- 

istic  viewpoint, K' must  be  related, in a  self-consistent 

CI 

X 

X 
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way,  to that  same  eddy  viscosity  which  governs  the  mode 

transfer by small  scale  fluctuations  (Section V). We adopt 

the  latter  viewpoint. 

The variances  (17b)  and  (18a)  determine the orbit com- 

ponents : 

with 

It is to  be  mentioned  that,  unlike h' which  depends on 

the  variance <a' ( - T)R' ( - T I >  of one path R' ( - T )  , the 
component 

M v CI 

contains  a  function 6' that  depends on the micro-fluctua- 

tions of two paths,  one is R' ( - T) and  the  other is 
w 

RL( - T )  carrying the field  intensity s', so that 
U 
N 

For  small T ,  the two paths  have  still to grow, so  khat 5' 

is small. For large T, the two paths  are too far  apart  and 
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lose  their  correlation, so that 6' tends  again  to zero. 

It is  for  the  intermediate T that 6' has  a  finite  value, 

so that (20) may  even  become  negative,  yielding  a  nega- 

tive  portion of the  Lagrangian  correlation ( 1 5 ) .  

Now we integrate  the  Lagrangian  correlation  with res- 

pect to T, to find  the  diffusivity in the  phase  space: 

This  expression can also  be  used as an integral  operator 

for  integrations  with  respect  to r and k". The memory- 

loss function M, as forming  a  part of M, governs  the loss  

of  memory  for  the  diffusivity  to  approach its equilibrium. 

The time  integral 

CI 

A 

will be  called the relaxation  time. 

I V .  CASCADE TRANSFER WITH DOUBLE MEMORY-LOSS 

We  take  the  moment of the  kinetic  equation (5) to 

obtain the following  moment  equation: 

with 
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Upon multiplying ( 2 4 )  by ujO) and  averaging,  we  obtain 

the energy  equation: 

where  the transport  functions  are  as  follows: 

production pC0& - {< lLT) E 1.; 
coupling 

transfer - (."? f0> 
r \ r Y  

dissipation 

The  momentum  equation  and  the  energy  equation  are  not 

purely  hydrodynamical,  since  they  contain  the  distribution 

function  f ( O ?  through J ( . O )  * and T ' O ) .  The function n. J ' O )  rep- 

resents  a  collisionless  interaction,  and  the  transfer  func- 

tion T'O) represents  a  transfer  between  the  two  portions  of 

the  spectrum of macro-  and  micro-energies,  respectively. 

This  transfer  originates  from  the  "particle-fluid"  inter- 
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action,  as  shown by the  new  Lagrangian  correlation 

between  the  fluid  velocity ui(O)  and the  distribution  f ( O )  

of the  "particles".  Thus  the  transfer  function  is  more 

specifically 

from ( 2 5 )  ( 2 7 )  and ( 2 8 ) .  

By applying  the  rule ( 1 2 1 ,  we can transform  the  new 

Lagrangian  correlation  into 

with 

and  get  the  transfer  function  in  the  form: 

This  form  can  be  made  more  explicit by inserting  the  ex- 

pression ( 2 2 )  for D' , as follows: 
Y c 
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Here we have  introduced f o r  the  sake of convenience: 

or,  more  briefly, 

where  the  dependence of i ( k " ) ,   i ( k ' )  on -T,v, and of 
Y .c .c 

, ( p ! O )  (k') on v may be considered  to  be understood.' 
l. cy ... 

By expanding  the  multiple  derivatives a ,ar, we have: 
j 

with 

The  second term on the right-hand side of (34)  gives, 

after  two  successive  integrations by parts: 
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with  the  obvious  condition 

so that,  after  a  substitution, ( 3 4 )  becomes 

with 

As far  as  their  real  values  are  concerned, 

N ( O ' ( &  h"), q : " [ k ' ) ,  i ( k " )  and i ( k ' )  are even  functions  of I = "  y 5 
U * 

k" and k' , so that  the  derivatives 
CI - 

will  generate  odd  functions,  and  will  not  contribute to 

the  integrations  with  respect  to k" and k' in  the  infinite 

domain.  Therefore  they  can  be  deleted  from  the  expression 
- 4/ 
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of N ' O )  for  the  purpose of calculating T ' O )  from (32). 
jr 

The  result 

is in the form  of the moment of (pjo) as driven  by  the 
differentials 3 . 3  of the orbit  functions.  Hence  the  trans- 

I =  
fer  function (32) takes the form 

and  is  seen to be  controlled by two  memory-loss  functions 

M(k") and M(k') as imbedded in k(k") and i(k') . 
w 4 - r* 

V.  EDDY  VISCOSITY  AND  COLLISIONLESS  DAMPING 

It is to  be  noted that  the  v-dependent  orbit  functions .. 
have  their  slowly  varying  component  hi  and  their  rapidly 

varying  component  h . Thus the differential  will  be 
mainly  contributed  by  the  differential  ahv of the  rapidly 

varying  component in the manner 

V 

V 

We notice  that the two orbit functions 
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compete  in  their  roles of loss of memory for the  approach 

of the  transfer  function (40) to  equilibrium,  under  the 

scaling  conditions 

Thus it suffices  to  select the function  that is most ef- 

fective  in  this  role. On this  basis, we shall  calcu-late 

the  asymptotic  expressions  by  considering  small  and  large 

scales.  Since  the  path  amplitudes E ( o )  ,E' and  the  trans- 

port  coefficients Ki0) ,Ki are  separated by k, the  small 

and  large  values of k correspond  to : 
3 S 

4'"' > A? ' 

and 

po)( 1' , 

respectively. 

Case (a). Large k 

For large k, or for  even  larger k", such  that 

(43a) 

k u >> k ' 

(43b) 

(44 1 

in conjunction  with (42) and  (43a) , we can  attribute  the 
dominant  role of memory-loss to the  function 



which is independent  of v, w h i l e   l e a v i n g   t h e  role of 

s t reaming t o  the   v -dependen t   o rb i t - func t ion  
.* 

& 

The independence of ( 4 5 )  on v is seen  from ( 1 8 )  and ( 1 9 ) ,  

a f t e r -   h a v i n g  assumed h' -N 1 o r  < ' E O  . This   approximat ion  

i s  l e g i t i m a t e ,   b e c a u s e   i n   t h e   i n t e g r a t i o n  ( 4 0 )  w i t h  re- 

s p e c t  t o  T ,  t h e  role of h' i n  c(  - T , ~ ; V )  i s  seen  from 

( 2 0 )  and ( 2 1 )  t o  be  taken  over   by h' and ho f o r  small and 

U 

5 -  

5 " 

l a r g e  T ,  r e s p e c t i v e l y .  Hence w e  reduce (39) and ( 4 0 )  

and 

r e s p e c t i v e l y ' .  Here 

is a modula t ion   func t ion   having  a s t reaming  by  hv  and a 

memory-loss  by  hoh' . 
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1n.strong  turbulence,  the memory-loss predominates 

over  the  streaming, and  renders  the  modulation  function 

to become  independent of  v  as  in 
c 

Thus  we  obtain an  eddy  viscosity 

and  transform ( 4 8 )  into 

The  integrations  herein  involved are: 

and 
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Hence, by substitution  into ( 5 2 ) ,  we obtain  the  transfer 

func.tion 

7" 5 k 

in the  form  of  the  product  of  the  eddy viscosit! 

(55) 

'Y 

the  vorticity  function R ' O ) .  Here, by  isolating  an  eddy 
rj 

viscosity,  we  have  found  a  cascade  transfer  of  the  gradi- 

ent  type. 

Case (b). Small k 

The  small  values  of k imply  an  even  smaller k'. This 

extremely  small k' , as compared to k", suppresses  all 

roles of h( - .r,k',v) before i( - T ,P:v), rendering 
" C N  

Thus  we  transform (39) into 

The factor k'!k'' emphasizes  large  values of k" so that 
J r  

we can write 

as an  approximation.  When this function is substituted 
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into (57) and  subsequently  integrated  with  respect  to T, 

following ( 4 0 1 ,  the  contribution  from hv as a  streaming 

is again  negligible as compared to the  memory-loss  for 

large k" in strong  turbulence. It follows  a  modulation 

function 

for  the  control of the  transfer  function ( 4 0 )  , yielding: 

Here  the two  integrals  with  respect to k' and kt' become 

separated  into  an  energy 
F- " 

by  (56)  and  (30b) , and a frequency 

called  the  rate  of  damping in the  collisionless  damping 

of the  energy.  Hence the transfer  function  becomes: 
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Since  the  transfer of energy is not of the gradient 

type,  we  cannot  isolate  an eddy  vicosity as  was  the case 

of large  k in (55). 

We may  consider 

as  integral  operators  which  emphasize  large  and  small 

values  of k by their  respective  integrations 

and write 

In  this  manner,  the  two  transfer  functions  (55) and (62) 

become 

and 

For large  and  small  k, the  operators  (63)  pick up 
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respectively,  from  the  sum k' kt + kNk" as appearing  in r j  r j  

of the  general  transfer  function ( 4 0 ) .  Thus the  formula 

( 4 0 )  is  a  general  transfer  function  with the special  forms 

(65) and ( 6 6 ) .  

VI .   DERIVATION  OF  THE KOLMOGOROFF LAW FROM THE  SCALED  KINETIC 
EQUATION 

Although the Kolmogoroff law' of the inertia  turbu- 

1enc.e has  been  derived  by  many  investigators  using  diverse 

methods  as  seen  in  a  recent  review2' of the diagram  tech- 

nique"  in conjunction  with  the  direct  interaction  approx- 

irnati~n~~, it is  for  the  first  time  that the analytical 

derivation of the  Kolmogoroff  law  and  its  numerical coef- 

ficient  is  obtained  from  the  scaled  kinetic  equation of 

turbulence.  Our  kinetic  method is generally  valid for in- 

ertia  and  non-inertia  turbulence. 

We  assume an isotropic  and  homogeneous  turbulence, 

and  that  the  field 

E 3- j^Pp 
c 

comes  from  the  pressure  gradient Vp in an incompressible 

fluid  of  constant  density p .  The  shear  and the buoyancy 

are  absent. The condition of incompressibility,  as  applied 

" 
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to the Navier-Stokes  equation ( 1 )  gives the relation 

between E and u, and  therefore  also  between  their  spectral 

distributions S (k)  and  F(k) . We  have 
.c .5 

and  find  the  relations (69 1 

where R ' O )  E ( O )  is  the  vorticity  function,  from (54), and 

the numerical  coefficient is determined  td be19t20 
Ri i 

The details of the  calculation  are  omitted. 

In the  inertia  subrange, the energy  balance in the 

spectral  form  is 1 3 , 1 4  

describing  a  constant  cascade of energy  transfer  across the 

spectrum  at the rate of energy  dissipation E .  Now the  trans- 
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.. . . 

fer  function, as found in (551, can be written in the iso- 

tropic form: 

where 

is  the  trace of the  eddy  viscosity  tensor (511, and  the 

modulation  function  is  given by (50), with w k =  0 .  

From (9) , (18a)  and (1 9) , we rewrite the modulation 
function (50) in the form: 

It  contains  the  decay of the  memory  at  a rate 

and  the  cut-off of the  memory  at  a  time uk-' such  that 

The  integral  is  evaluated by an  interpolation,  giving  a 

modulation  function 
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Hence  we  determine the eddy  viscosity  by  the  following  in- 

tegral  equation: 

When  the  spectrum S ( k )  is converted  into  the  spectrum 

F(k) by the relation (70), we find  the  solution of (731, 

giving  the  spectra 

of velocity,  field  and  pressure  fluctuations,  respectively. 

The  details  of  calculations  are  omitted. 

V I  I .  DISCUSSION 'P 

The micro-dynamical  state of turbulence can be  de- 

scribed  by  a  nonlinear  and  stochastic  hydrodynamical  system 

which may be  homogeneous or inhomogeneous. The Navier-Stokes 

system of equations is inhomogeneous, as in ( l ) ,  or briefly 

as 
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The inhomogeneous  system in the  physical space may  be  con- 

verted  into  a  homogeneous  equation in the phase space, as 

Y r  

called the "master 

homogeneous  system 

equation". It is equivalent to the  in- 

(8 0) , provided 

Other  homogeneous  systems  may be: 

(i) the  Burgers  equation 

(ii)  the  Korteweg-DeVries  equation - 

(iii)  the  equation of geostrophic  turbulence 
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From  the  conceptual  viewpoint,  being  given  the'micro- 

dynamical  state  of  turbulence,  the  question  may  arise  as 

to  what  treatment  one  should  choose:  the  kinetic  treatment 

or the  hydrodynamic  treatment.  Since a homogeneous  partial 

differential  equation  can  describe  the  exact  orbit  dynamics 

by the  differential  perturbation  operator L alone,  there 

is  an  essential  advantage  to keep a homogeneous  system, 

either  in  the  hydrodynamic  representation ( 8 3 )  or in the 
. 

kinetic  representation (81) .  For this  reason, we have 

chosen the kinetic  method  which,  moreover,  supresses a l l  

nonlinearities  caused  by  the  velocity  since the velocity 

is  an  independent  variable  here. The  only  nonlinearity 

that  subsists is from g=zfi in (81 ) .  This  entails a Rey- 

nolds  stress in the  phase  space,  the  evolution of which 

requires  the  knowledge  of  the  Lagrangian  correlation of 

E-field  fluctuations  and a theory of transport. The  ap- 
A 

proach to  equilibrium  and  the loss of  memory  constitute 

the basis  for  the  closure of turbulence. 

There  are  two  Lagrangian  correlations  involved: one 

is the correlation of 5-field  fluctuations as stated  above, 

and  the  other is  the  correlation  between the velocity  fluc- 

tuations  and  the  fluctuating  distribution of velocities. 

The  latter  arises  because  our  kinetic  equation (5) of tur- 

bulence  has a long  memory.  Since  each  Lagrangian  correla- 

tion  entails a memory,  our  kinetic  theory  of  transport 

finds  two  memory-loss  functions.  Their  competitive  roles 

B-33 



I 

and  their  cut-off  are  the  main  issues  of  our  analysis. 

The  difficulties  are  minimized  by  introducing  a  scaling 

procedure  which  dispenses  from  our  involvement  wi.th  the 

two-point  distribution  function.  Then  the  scaled  proba- 

bilities  of  transition  determine  the  scaled  orbit  func- 

tions. The scaling  permits the  distinction  between  the 

macro-  and  micro-variances of path  fluctuations  which  are 

associated  with  the  unmatured  (i.e. small time) and the 

matured  (i.e.  large time)  properties of transport.  Other- 

wise, the  unscaled  variance  would  appear  as  an  external 

parameter. 

Our  results  indicate that  the  transfer  function  takes 

a  gradient  form  for  small  scale  turbulence,  isolating an 

eddy  viscosity,  and  a  form  of  collisionless  damping  with- 

out  gradient  for  large  scale  turbulence,  isolating a rate 

of  collisionless  damping. 

We can  write  the  equation of energy (26) in  the form: 

with the transport  functions:  production P ( O )  , loss B , 
transfer  T(O)  and  dissipation E ' O ) .  In statistical  equili- 

brium the left-hand  side is independent  of k, so that, 

after  a  differentiation  with  respect  to k, we have  the 

spectral  balance 

( 0 )  
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for  scales  larger  than  that of the  inertia  turbulence. 

Note  that E ceases to be  the  governing  parameter  here. 

This  means  that 

) 0 in a  net  production  (86a) 

- 
" ( O )  < 0 in  a  net loss. 

The  change of signs  in  (86a)  and  (86b)  refers to a  direct 

cascade (i.e. a  cascade  transfer  toward  large  wavenumbers) 

and to an  inverse  cascade (i.e. a  cascade  transfer  toward 

small  wavenumbers),  respectively. The transfer  function  in 

the  form  of  collisionless  damping  is  preferred  for  the de- 

scription of the  inverse  cascade. The arbitrary  use  of  the 

transfer  function in the  form  of  gradient  transport  would 

result in a  negative  spectrum. 
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CHAPTER C: QUARTER  THREE 

Group-Scaling Theory fo r   t he  Enstrophy Transfer 
in Two-Dimensional Turbulence 

C.M. Tchen 
The Graduate  Center and The City  College of  
The City  University  of New York, N . Y .  10031 

ABSTRACT 

Since  the  detailed  interactions  between  the  indi- 

vidual  modes  contain  too  many  minute  details  unneces- 

sary  for  a  statistical  theory,  we  scale  the  modes  into 

groups  which  can  more  easily  decipher  the  governing 

transport  processes  and  the  statistical  characteristics. 

An equation of vorticity  transport  describes  the  micro- 

dynamical  state  of  two-dimensional,  isotropic  and  homo- 

geneous,  geostrophic  turbulence.  By  the  group-scaling, 

we  derive the equation of evolution of the  macro-vorti- 

city  in  the  form  of  the  Fokker-Planck  equation  with 

memory. The eddy  diffusivity  and  the  enstrophy  trans- 

fer  relax to equilibrium  through  the  memory-loss  by  tur- 

bulent  dispersions. The memory-loss is analyzed  by  de- 

veloping  a  theory of probability  of  retrograde  transi- 

tion  in  the  scaled  form.  We  find &at the  eddy  dif- 

fusivity  contains  two  time  scales,  characteristical  of 
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the  small-time  scattering  and  the  large-time  diffusion. 

In the  special  cases,  our  formula  can  be  degenerated  to 

an  empirical  form  suggested by  Heisenberg  when  the  scat- 

tering  prevails,  and to a  form  derived  earlier  by  Tchen 

when  the  diffusion is dominant. In the  inertia  subrange, 

as  governed  by  the  enstrophy  cascade,  the  spectral  law 

FU = CE is  derived  with  a  numerical  coefficient 

c = 2.59. 

2/3k-3 
5 
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I .  INTRODUCTION 

The  micro-dynamical  state of turbulence  can  be  de- 

scribed  by  the  equations  in  the  following  forms: 

(a)  a  non-conservative  (or  inhomogeneous)  equation 

in  the  physical  space, 

(b)  a  conservative (or homogeneous)  equation  in  the 

physical  space,, 

(c)  a  conservative  equation in  the  phase  space. 

The form (a) contains  a  stirring  force,  which  may  be 

the  pressure  gradient,  the  buoyancy, or the  random  noise. 

The  Navier-Stokes  equation  falls  under  the  form (a). The 

two-dimensional  geostrophic  turbulence  also  belong to 

the  form  (a),  if  the  turbulence  is  driven by a  random 

vorticity  source,  and  will  fall  into  the  form  (b)  if  such 

a  source  is  absent.  The  one-dimensional  Burgers  equation 

and the  Korteweg-DeVries  equation  also  falls  into  the 

form  (b). 

It is to be  noted  that  the  non-conservative  equation 

(a)  in  the  physical  space  can  be  converted  into  a  con- 

servative  equation  (c)  in  the  phase  space  by  regarding 

the  stirring  field as an advection.  Therefore  the  prob- 

lems  of  the  conservative  system  should  be  the  main  ob- 

jective  of  a  statistical  theory.  With  this  emphasis  in 

mind,  we  develop  a  statistical  theory,  using  the  scaling 

procedure to study  the  mode-couplings  and  the  transport 

property,  and  relying  upon  the  memory-loss  to  obtain  the 
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closure of turbulence. A kinetic theory' on the  basis 

(c) has  been  developed  by  Tchen  for  the  Navier-Stokes 

turbulence (a). Presently, we apply the  scaling  method 

to  the  two-dimensional,  isotropic  and  homogeneous,  geo- 

strophic  turbulence. 

In  view  of  the  many  applications  to  the  meso-scale 

flows  in  the  atmosphere  and  the  availability  of  numeri- 

cal  computations , the  problem  of  geostrophic  turbu- 

lence  has  attracted  many  investigators , see  a  review 

by  Rhines' '. The geostrophic  turbulence  is  characterized 

by  an  enstrophy  transfer  from  large  scales  toward  small 

2-7 

8-10 

scales,  yielding  a  spectrum  of  velocity  fluctuations 

following  the k-3 law.  Most  theories  analyzed  the  triad 

interactions 12-18 

The present  theory  simplifies  the  interactions by 

scaling a fluctuation  into  three  groups,  representing  the 

evolution,  the  eddy  transport  and  the  relaxation.  Our 

purpose  is  to  derive  analytically  the  enstrophy  transfer 

function,  the  eddy  transport  coefficient  and  the  spectral 

distribution.  Upon  a  generalization  to  a  kinetic  method 

(c), as  is  equivalent  to  the  non-conservative  micro- 

dynamics (a . ) ,  we  expect  to  find: 

(i)  the  spectral  law  k -5'3 in  a  direct  cascade of 

energy  transfer  at  large k, 

(ii) the spectral  law k -5'3 in,  an  inverse  cascade 

of energy  transfer at small k, 
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(iii) the  spectral  law k-4 from  an  enstrophy  trans- 

fer in a  geostrophic  turbulence  that  is  driven by ran- 

domly  distributed  vorticity  sources.  These  results  will 

be reported  on  a  separate  occasion. 

11. SCALED  VORTICITY  EQUATION OF TURBULENCE 

The  two-dimensional  incompressible  flow  in  the  hori- 

zontal  plane is governed by the  following  equations  of 

motion: 

and 

v.LL = o  A 

Y -  

Here 3 is  the  velocity, - 

is  the  scalar  vorticity, 

is  the  differential  operator,  and v is  the  kinematic  vis- 

cosity.  By  the  condition  (lb),  the  pressure  gradient, 

the  vertical  buoyancy  force,  and  the  vertical  Coriolis 

parameter  are  eliminated. The system (1) describes  the 
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micro-dynamical s tate o f   geos t roph ic   t u rbu lence .  

The s c a l i n g  may be made by  means of t h e   o p e r a t o r  

A s 0  

o f   g l o b a l   a v e r a g e   a n d   t h e   f l u c t u a t i o n   o p e r a t o r  

(4a)  

g i v i n g   t h e   d e v i a t i o n  from t h e   g l o b a l  averaqe. The f l u c -  

t u a t i o n  operator 

i s  s u b s e q u e n t l y   d i v i d e d   i n t o   t h e   o p e r a t o r  A ' O )  o f  macro- 

f l u c t u a t i o n   a n d   t h e   o p e r a t o r  A' of   mic ro - f luc tua t ion .  

For   the   sake   o f   convenience ,  w e  i n t r o d u c e   a n   o p e r a t o r  

giving  an  accumulated  macro-group.  Thus w e  have: 

and 
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The  macro-fluctuation  and  the  micro-fluctuation  can  in- 

stantaneously  overlap  in  their  wavenumber  components,  but 

their  statistical  functions  are  distinctly  separated  by  a 

wavenumber  variable k, and  by  their  durations  of  correla- 

tion 

in  the  increasing  degrees  of  incoherence. 

By applying A ' O )  and A' to (la), .we obtain  the  follow- 

i n g  scaled  system: 

By a  formal  integration  of  (7b)  and a substitution 

into  (7a), we eliminate r,' to  obtain  the  equation of 

evolution of the  macro-vorticity: 

where 

is  the  eddy  diffusivity,  and  U(t,t-T) is the  propagator, 
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or t h e   o p e r a t o r  of e v o l u t i o n   a l o n g   a n   o r b i t   t h a t  i s  per-  

tu rbed   accord ing  t o  ( 3 ) .  W i t h o u t   a l t e r i n g   t h e   v a l u e  of 

t h e   i n t e g r a l ,   t h e   u p p e r  l i m i t  may be   pu t  t o  i n f i n i t y ,  by 

t h e  scale s e p a r a t i o n  (61, g i v i n g  a matured ( i . e .  l a rge -  

time) d i f f u s i v i t y .  I t  is t o  be n o t e d   t h a t   t h e   d i f f u s i -  

v i t y   e n t e r s  a s  a n   i n t e g r a l   o p e r a t o r K ' 0 . i n  (81 ,  so t h a t  

t h i s   s c a l e d   v o r t i c i t y   e q u a t i o n   t a k e s   t h e  form  of  an  integro- 

d i f f e ren t i a l   equa t ion ,   and   no t   t he   cus tomary   Fokker -P lanck  

d i f f e r e n t i a l   e q u a t i o n .  

% 

When w e  m u l t i p l y   t h e   v o r t i c i t y   e q u a t i o n  ( 8 )  by 5 ( O )  

and  average, w e  g e t  

Here w e  h a v e   r e t a i n e d   t h e   k i n e m a t i c   v i s c o s i t y   i n   t h e   d i f -  

f e r e n t i a l   o p e r a t o r  L. 

I n  a homogeneous tu rbu lence ,   t he   s econd  term on  t h e  

l e f t - h a n d   s i d e   v a n i s h e s ,   a n d   t h e  l a s t  term on t h e   r i g h t -  

hand s i d e  becomes 
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In an analogous  way, we can  write 

and  find  the  first  term on the  right-hand  side of (10) to 

be 

Here the  diffusivity  remains  to  be  an  integral  operator 

with  its  time  integration  extended  to  the  Lagrangian  cor- 

relation 

The  diffusivity is written  in  the  form  of  a  trace.  The 

function E ( O )  is  the  rate  of  molecular  dissipation  of  the 

enstrophy f < <  ( O ) * > .  The  function T 
5 
( O )  represents  the  mode- 

coupling  and is called  the  "enstrophy  transfer". 

5 

In terms of,the dissipation  function  and  the  transfer 

function,  the  equation  of  spectral  balance  (10)  is  reduced 

to  the  form: 

It represents  the  time  decay  of  the  mean  vorticity or 

enstrophy 
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which  has  a  spectral  distribution F (k) of  5-fluctuations. 
5 

111. TRANSPORT  PHENOMENA IN TURBULENCE 
A. Lagrangian-Eulerian  transformation in the  scaled  form 

The  Lagrangian  velocity  follows  a  trajectory  that  is 

governed  by  the dynamical  equation: 

or  the  orbit  equation 

where  the  perturbed  path 

'consists  of  a  mean  path Z ( - - T )  and a  path  fluctuation - 
J L ( - T ) .  In  the  following  calculations  of  the  path  pertur- 

bations,  we  shall  neglect  the  effect  of  the  kinematic 
.c 

viscosity v as compared  to the larger  effect  from  the 

eddy  motions. 

By means  of  the  Fourier  transformation, we can  write 

the  Lagrangian  and  Eulerian  correlations  in  the  following 

c-10 



and 

r e s p e c t i v e l y .  Here ~ ' ( k ' ' )  i s  a f l u c t u a t i n g   i n t e n s i t y   i n  

t h e   k - s p a c e ,   s u c h   t h a t  
f u  - 

- 
(4 ' (k1Q 5 7 (u'(k'7 &/(-hi y> 
," .b - . * e  4r- 

( 1  7a)  

i s  t h e   s p e c t r a l   f u n c t i o n ,   a n d  

i s  t h e  factor  of t r u n c a t i o n ,  when the   Four i e r   t r ans fo rma-  

t i o n  i s  t r u n c a t e d   w i t h i n  a l e n g t h   i n t e r v a l  2 X  i n  t w o  

dimensions,  i . e .  d =  2. The F o u r i e r   t r a n s f o r m a t i o n   h a s  a 
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F o u r i e r   k e r n e l  

w i t h  a frequency uk = uk(k“) t h a t  arises from a d i s p e r s i o n  

r e l a t i o n ,  e.g. as r e l a t i n g   t o   a n   i n t e r n a l   g r a v i t y  wave. 
h 

19 

The i n t e g r a t i o n s   i n  ( 1 5 ) - ( 1 7 )  and i n   t h e   f o l l o w i n g  

are understood t o  extend  from -m t o  03. 

The c o r r e l a t i o n   i n   t h e   i n t e g r a n d   o f  ( 1 5 )  can  be 

w r i t t e n  as 

c o n s i s t i n g  of a mutua l ly   i ndependen t   pa r t   t ha t   can   be  

f a c t o r i z e d  as 

v 
T 

and a c o r r e c t i o n  
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accounting 

correction 

tering  and 

for  the  mutual  dependence.  We  find  that  this 

is not  too  important  for  the  small-time  scat- 

the  large-time  diffusion  that  are  of  interest 

in  our problem. The  mutually  independent  part  contains 

an  average 

that is calculated by the  probabilities of transition  in 

the  scalings by A. and x. The  derivation  of  the  proba- 

bility  functions  and  the  calculations  of  the  average are 

presented  in  Appendix A ,  finding 

A 

On  the  right-hand  side  appear  the  components  of  the  orbit 

functions, or "orbit  components".  The  mean  path  gives  the 

component 

The  fluctuations  give  the  components 

C-13 
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i n   t h e  unmatured  and  matured  dispers ions,   respect ively,  

of t ibe  scales m 
-1 

( O ) - '  and w 6  , s u c h   t h a t  

The d e t a i l s   o f   t h e   c a l c u l a t i o n  are given i n  ( A 2 0 ) -  ( A 2 4 )  

of Appendix . The f u n c t i o n  F U ( k " )  is  t h e   s p e c t r a l   d i s -  

t r i b u t i o n  of v e l o c i t y   f l u c t u a t i o n s ,  as desc r ibed  by (A19) 

i n  Appendix. 

If  w e  lump t h e   o r b i t  components  caused by t h e   f l u c -  

t u a t i o n s   i n t o   t h e   f u n c t i o n  

called t h e  "memory-loss  function", w e  c a n  write t h e  Lag- 

r a n g i a n - E u l e r i a n   r e l a t i o n s h i p   i n   t h e  form: 

This  i s  a n o n l i n e a r  

c o n t a i n s  W' through 
#uL * 

i n t e g r a l   e q u a t i o n  for  WL ( T I ,  s i n c e  M 

h' , w' and ( 9 ) .  Note t h a t   t h e   E u l e r -  
Y c 

K 
i a n   c o r r e l a t i o n  i s  governed by t h e  mean p a t h  Z ( - T ) ,  wh i l e  

t h e   L a g r a n g i a n   c o r r e l a t i o n  i s  governed by t h e  mean p a t h  
- 
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and the  path  fluctuation a ( - . r ) .  
N 

6. Relaxation time 

Upon  substituting (27) into  (91,  we find the  diffusi- 

vity  tensor  and  its  trace  in  the form: 

It  is seen  that  the  diffusivity  approaches  its  equilibrium 

in a  relaxation  time 

or,  approximately, 

The  approximation  is  based  upon  the  interpolation. 
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C. Diffusivity 

The  equation  (28b)  which  determines  the  diffusivity 

k' is in  reality  an  integral  equation  since  the  relaxation 
time G (k'') is  also  a  function  of F' through w' by  (25b). 

As an  approximation,  we  calculate  the  asymptotic 

values of K' by considering  the  following  two  special 

cases: 

K K' 

case  (i)  If GK is  controlled by r n ( O ) ,  we find 

with C K =  6 in two  and  three  dimensions. 

case  (ii)  If GK is controlled by u' we find kt 

As an  interpolation, we write: 

It is  degenerated  into 

( 3 3 )  
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IV. DOUBLE MEMORY-LOSS 

The first memory-loss  function M ( - T , ~ " )  a p p e a r s   i n   t h e  

L a g r a n g i a n   c o r r e l a t i o n  ( 2 7 )  wh ich   p roduces   t he   d i f fus iv i ty  

( 3 2 ) .  The  second  memory-loss  function arises from t h e  

s e c o n d   L a g r a n g i a n   c o r r e l a t i o n   ( l l d ) ,   w i t h   t h e  same d i f -  

f u s i v i t y  i n  i t s  r o l e  of a n   i n t e g r a l   o p e r a t o r  as appear ing  

i n   t h e   t r a n s f e r   f u n c t i o n   ( l l c ) .  

I n   o r d e r  t o  d e r i v e   t h e   s t r u c t u r e   o f   t h e   t r a n s f e r   f u n c -  

t i o n   ( l l c )   i n   i s o t r o p i c   t u r b u l e n c e ,  w e  f i r s t  write t h e  

s e c o n d   c o r r e l a t i o n   f u n c t i o n  as 

i n   a n a l o g y   w i t h  (27). Here 

i s  t h e   s p e c t r a l   i n t e n s i t y   o f   $ - f l u c t u a t i o n s ,   s u c h   t h a t   t h e  

i n t e n s i t y  
41 

can be e x p r e s s e d   i n  terms of F (k') by 
5 
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Use is made of (lla). N o t e   t h a t   t h e   r e l a t i o n s h i p  

between  the two s p e c t r a   f o l l o w s   d i r e c t l y   f r o m  t h e  d e f i n i -  

t i o n  ( 2 ) .  

Now w e  a p p l y   t h e   i n t e g r a l   o p e r a t o r  fC'{ } t o  ( 3 4 )  and 
f 
" 

write t h e   t r a n s f e r   f u n c t i o n   i n   t h e   f o l l o w i n g  form 

accord ing  t o  t h e   d e f i n i t i o n   ( l l c ) ,  o r  i n  t h e   a l t e r n a t e  

form 

when K'{  } i s  w r i t t e n   o u t   f u l l y  by means of  (28b). I t  is  

s e e n   t h a t   t h e   t r a n s f e r   f u n c t i o n   a p p r o a c h e s  i t s  equ i l ib r ium 

a t  a new r e l a x a t i o n  time 

w i t h  t w o  memories: 
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V .  TRANSFER  FUNCTION 

By  the  use  of (13) and (17),  the  transfer  function 

(37b) can  be  rewritten as: 

where, by definition (381, the  relaxation  time GT(k:k") 

sums up the  contributions  from  the  two  competing  memory- 

loss functions (39)  under  the  conditions 

with  the  properties 

so that  the  role  of  memory-loss  is  taken  over by M(-r,k"), 

i.e. 

Thus we can  reduce (38)  to 

G,k k '*) $ b '9 , ( 4 4 )  

and  separate  the  two  integrations  with  respect  to  the  wave-. 

numbers in ( 4 0 1 ,  obtaining  the  degenerate  form 
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more b r i e f l y ,  

i n   t h e   n o t a t i o n s   ( 2 8 b )  and  (36a) .  

VI. INERTIA  SPECTRUM 

I n  terms of t h e   s p e c t r a  FU(k) and F (k), w e  can write 
5 

t h e   s p e c t r a l   b a l a n c e  ( 1 2 )  i n   t h e  form: 

S i n c e   t h e   d i f f e r e n t i a l   v a n i s h e s ,  i . e .  

i n  s t a t i s t i ca l  e q u i l i b r i u m ,   t h e   i n t e g r a l  form  should  read 

where 

i s  a c o n s t a n t  rate of d i s s i p a t i o n  of t h e   e n s t r o p h y .  A 
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fluctuating E would  enhance  the  intermittency  which  we 

shall  not  consider at present. 
5 

The inertia  subrange is described by the  spectral 

balance 

by omitting  the  effect of molecular  dissipation  in  the 

left  member  of ( 4 8 ) .  

When we use  the  general  formula (32) for k ;  and ob- 
serve  the  relationship (36b) between  the  two  fluctuations 

u  and 5 ,  we  determine  the  spectra  from ( 5 0 ) .  The results 

are : 
CI 

V I I .   D I S C U S S I O N S  AND  CONCLUSIONS 

The problem  of  turbulence  starts  with  the  nonlinear 

equation  describing  the  micro-dynamical  state  of  turbu- 

lence.  This  equation  contains  too  many  minute  details 

which  are  too  complicated  and also unnecessary  for  the 

statistical  theory of turbulence.  Past  theories  either 

followed  the  kinetic  method  and  closed  at  a  high  order 

distribution  function, or the  hydrodynamical  method  and 
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c losed  a t  a h i g h   o r d e r   c o r r e l a t i o n .  They ana lyzed   t he  

d e t a i l e d   i n t e r a c t i o n s   b e t w e e n   i n d i v i d u a l  modes.  The 

p resen t   t heo ry   beg ins   w i th   t he   coa r se -g ra in ing   p rocedure  

by d i s t i n g u i s h i n g   b e t w e e n   t h e   f l u c . t u a t i o n s  of t h e  macro- 

g roup   and   t he   f l uc tua t ions   o f   t he   mic ro -g roup .  I t  t r a n s -  

forms   the   equat ion   descr ib ing   the   micro-dynamica l  s t a t e  

i n t o  a s c a l e d   e q u a t i o n   o f   t u r b u l e n c e ,   i n   w h i c h   t h e  macro- 

f l u c t u a t i o n s   e v o l v e   i n  a medium of more random eddies   be-  

longing  t o  t h e   m i c r o - g r o u p .   I n   t h i s  way it a n a l y z e s   t h e  

s t a t i s t i c a l  couplings  between  groups  of modes i n s t e a d   o f  

t he   de t a i l ed   coup l ings   be tween   i nd iv idua l  modes. For t h e  

approach of t h e   t r a n s p o r t   p r o p e r t y  t o  equ i l ib r ium,  as a 

c l o s u r e   o f   t u r b u l e n c e ,   t h e  memory-loss  by t u r b u l e n t   d i s -  

p e r s i o n s  i s  e s s e n t i a l .  We f i n d  a s c a t t e r i n g  by t h e  small- 

time d i s p e r s i o n   a n d  a d i f f u s i o n  by t h e   l a r g e - t i m e   d i s p e r -  

s i o n   i n   t h e   p r o c e s s   o f  memory-loss  and f o r   t h e   d e r i v a t i o n  

o f   t h e   e d d y   d i f f u s i v i t y .  Our formula ( 3 2 )  of eddy   d i f -  

f u s i v i t y   c a n   b e   d e g e n e r a t e d  t o  the   Heisenberg  form ( 3 0 )  

when t h e   s c a t t e r i n g   p r e v a i l s 2 ' ,   a n d  t o  the   form (31)  when 

t h e   d i f f u s i o n  i s  dominant. The l a t t e r  form  has  been  used 

as an   empir ica l   formula   in   model ing   the   a tmospher ic   tu r -  

bulence by Gis ina21;  it has  also b e e n   d e r i v e d   a n a l y t i c a l l y  

by Tchen22  from a cascade   theory .  The t r a n s f e r   o f   e n s -  

t rophy i s  found t o  cascade  down t h e  spectrum toward   t he  

large wavenumbers.  The s p e c t r a l  law F (k) = C E  f o r  

t h e   v e l o c i t y   f l u c t u a t i o n s   a n d   t h e   n u m e r i c a l   c o e f f i c i e n t  

2/3k-3 
5 5 
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e 

c = 2 . 5 9 ,  as  derived  in ( 5 1 ) ,  agrees  with  the  results from 

the  triad  interactions by  Xraichnan! The  nonstationarity 

of E: will  cause  a  logarithmic  factor  due  to  the  inter- 

mittency of turbulence,  and  will be considered  on  a sep- 
5 

arate  occasion. 
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APPENDIX.  SCALING  THEORY OF TRANSITION 

We  distinguish  between  a  direct  transition  and  a 
.I 

retrograde  transition of paths L?(T)  and i ( - ~ )  in the  posi- 

tive  time T and  the  negative  time -T, respectively.  The 

probabilities of transition  have  been  investigated by 

T ~ h e n * ~ ,  and  were  found to be  governed  by  the  Fokker- 

.y .c 

Planck  equations.  The  derivations  were  based  on  a  pheno- 

menological  ground.  Here we shall  re-examine  the  retro- 

grade  transition by a  scaling  procedure  and on a  basis 

that  is  consistent  with  the  specified  micro-dynamical  state 

of  turbulence, i.e. the  orbit  equation: 
1 

see ( 1  4b). 

The  micro-dynamical  state of the  orbit  can be de- 

scribed  by the  master  equation 

upon  the  introduction of the  &-function 

and the  differential  operator 
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I 

We  may  consider  the  independent  variable 2 to  be  a  random 

variable, so that P becomes  a  distribution  function  which 
- 

A 

satisfies  the  normalization  condition 

and gives  the  moment 

It is easy to verify  that  the  moment  of ( A 2 )  reproduces 

the  orbit  equation  (Al)  identically. 

Now we apply  the  scaling  operators A. and A' to (A2) 

and  find the  following  coupled  system  of  equations: 

.. 
We  integrate  (A6b) to get 

0 
-LI 

and 

C-25 



where 

is a  diffusivity  and Ug is  a  propagator  or  evolution 

operator  in  the  retrograde  transition.  The  propagator 

U, may  be  considered  as  the  inversion  of  the  differential 
x. 

operator LR. 

When  we  substitute  (A8)  into  (A6a),  we  derive  the 

equation of the  retrograde  transition of the  macro-group 

in the  form of an  integro-differential  equation. 

In  an  analogous  manner, we derive the equation  of 

transition 

Here  the  governing  diffusivity  is 

as caused by the velocity  fluctuations  except u'. 
v 
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We  make  a  Fourier  transformation of (A10) and (AI  1 )  

by the  formulas 

where K is  an  independent  variable  in  the  Fourier  space, 

and d is the  number of dimensions.  We  get 
4 

The solutions are: 

(A1 4a) 

(A1 4b) 

(A1 5a) 

with  the  following  components of the  orbit  function: 
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(A1  6a) 

(A1  6b) 

(A1  6c) 

I 

Note  that K is the  diffusivity  in  a  matured (i.e. 
c VI 

large-time T) dispersion,  and K ' O )  is  the  diffusivity  in 

an  unmatured  (i.e.  small-time T )  dispersion.  In  the 

latter  case  the  orbit  belongs  to  a  free  flight, so that 

e 

is locally  stationary, and  the  trace  in  isotropic  turbu- 

lence  becomes 

the  integration  over  a  region of radius K gives 

$dv '= % -r k t  in 2 dimensions 

= a m3 in 3 dimensions J 
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I -  

Here x is the  factor of Fourier  truncation.  In  terms  of 
the  spectral  function FU(~), such 

we find 

that 

in  2  dimensions  (Alga) 

in 3 dimensions  (A19b) 

in  d  dimensions  (AZO) 

In  conclusion,  with  the  use of (A20) and the  introduc- 

tion  of  the  frequencies m ( O )  and w;, such  that 

and 

'"K 
= &/I?! K ' z  K 2 K '  - -  .v 

we find  the  orbit  components  to  be 

(A2 1 b) 
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(A22b) 

Now the  solutions (A151 can be applied to calculate 

and,  subsequently 

- itc .j(-., FAo e rc - 

by the use of the  formulas (A13). We  obtain 

and hence 

(A23b) 
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CHAPTER D: QUARTER FOUR 

A Group-Kinet ic   Theory  of   Turbulent   Col lect ive  Col l is ion 
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ABSTRACT 

For   t he   desc r ip t ion  o f  the   microdynamica l   s ta te   o f   tu rbulence ,  a 

L i o u v i l l e   e q u a t i o n  i s  t a k e n   t h a t  i s  e q u i v a l e n t  t o  the   bas ic   hydrodynamica l  

system  of   equat ions.  The equat ion   has   the   advantage   o f   be ing  homogeneous 

and   conta ins  less n o n l i n e a r  terms. Our main o b j e c t i v e  i s  t h e   d e r i v a t i o n   o f  

the   k ine t ic   equa t ion   of   tu rbulence   which  has a memory i n   t h e   t u r b u l e n t  

c o l l i s i o n   i n t e g r a l .  We cons ide r   t he  basic p a i r - i n t e r a c t i o n ,   a n d   t h e  

in t e rac t ion   be tween  a f l u c t u a t i o n   a n d   t h e   o r g a n i z e d   c l u s t e r   o f   o t h e r  

f l u c t u a t i o n s   i n   t h e   c o l l e c t i o n  s y s t e m ,  c a l l e d   t h e   r c u l t i p l e   i n t e r a c t i o n .  

By a group-scaling  procedure,  a f l u c t u a t i o n  i s  decomposed i n t o   t h r e e   g r o u p s  

to   r ep resen t   t he   t h ree   coup led   t r anspor t   p rocesses  of  e v o l u t i o n ,   t r a n s p o r t  

c o e f f i c i e n t ,   a n d   r e l a x a t i o n .  By e x p l o i t i n g   t h e   p r o p e r t y  of  q u a s i - s t a t i o n a r i t y  

a t  t h e   d i f f e r e n t  l eve ls  of   degradat ion of coherence o f  the   g roups ,  we 

develop a t r a n s p o r t   t h e o r y   w i t h   t h e   c l o s u r e  by the  memory-loss. The k i n e t i c  

e q u a t i o n   o f   t h e   s c a l e d   s i n g l e t   d i s t r i b u t i o n  is capab le   o f   i nves t iga t ing  

the  spectrum  of   turbulence  without   the  need of the  knowledge  of  the p a i r  

d i s t r i b u t i o n .  

The e x a c t   p r o p a g a t o r   d e s c r i b e s   t h e   d e t a i l e d   t r a j e c t o r y   i n   t h e   p h a s e  

space,   and is  fundamental t o  the   Lagrangian-Euler ian  t ransformation.  We 

ca lcu la te   the   p ropagator   and  I ts  scaled  groups by  means of a p r o b a b i l i t y  of 

r e t r o g r a d e   t r a n s i t i o n .  T h u s   o u r   d e r i v a t i o n   o f   t h e   k i n e t i c   e q u a t i o n  of t h e  

d i s t r i b u t i o n   i n v o l v e s  a para l le l   deve lopment   o f   the  kinet ic  equa t ions   o f  

t h e   p r o p a g a t o r   a n d   t h e   t r a n s i t i o n   p r o b a b i l i t y .   I n   t h i s  way, w e  can   avo id   t he  



assumptions  of  independence and  normality. 

Our  result  shows that the  multiple  interaction  contributes to a 

shielding and an enhancement of the  collision in weak turbulence and  strong 

turbulence,  respectively. The  weak turbulence is dominated by the wave 

resonance,  and the  strong  turbulence  is  dominated by the diffusion. 
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I. INTPODUCTION 

The microdynamical state of t u rbu lence  can b e  desc r ibed  by t h e   e q u a t i o n  

of e v o l u t i o n  of t h e   d i s t r i b u t i o n   f u n c t i o n   f ( t , x , v )  i n  t h e  form: - "  

The d i f f e r e n t i a l   o p e r a t o r  

t h e   b a l l i s t i c   o r b i t   t h a t  i s  r ep resen ted  by Jt + j .  i n   t h e   p h a s e   s p a c e  
" 

o f   p o s i t i o n  x and   ve loc i ty  v . 
* 

I n  plasma tu rbu lence ,   ( l a )  i s  c a l l e d   t h e  Vl.asov equat ion ,  when E i s  t h e  
A - 

e l e c t r o s t a t i c   f i e l d   m u l t i p l i e d  by t h e   r a t i o   o f  e l ec t r i c  cha rge   t o  mass. 

The  equa t ion   can   a l so   be   u sed   t o  t rea t  t h e   f l u i d   t u r b u l e n c e ,  when E 
A 

... 
represents   the   p ressure-gradien t   o r   o ther   addi t iona l   hydrodynamica l   forces .  

We decompose t h e ,   t o t a l   d i s t r i b u t i o n   f u n c t i o n  

A CI 

f = ? + f  

i n t o  an a v e r a g e   d i s t r i b u t i o n  

by  means of t he   ave rag ing   ope ra to r  A , and a f l u c t u a t i o n  
- 

-a w 
f = A f .  , 

by means of t h e   f l u c t u a t i o n   o p e r a t o r  
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The d i f f e rence   be tween  A and ( ) l i es  i n   t h a t   t h e   o p e r a t o r  A , 

l i k e  a n y   o t h e r   o p e r a t o r s ,   a p p l i e s   t o  a l l  the   func t ions   wh ich  may fol low,  

d - ,  

whi le  ( } is  a n   e n s e m b l e   a v e r a g e   o f   t h e   f u n c t i o n   o r   f u n c t i o n s   l i m i t e d  

by t h e   a n g u l a r   b r a c k e t s .  

Thus  by  applying A t o  ( la)  , i . e .  b y   p r e m u l t i p l y i n g   ( l a )  by , - 
- 

we o b t a i n   t h e   e q u a t i o n   o f   e v o l u t i o n   o f  f , as fo l lows:  

The c o l l e c t i v e   c o l l i s i o n  

can   be   wr i t t en   i n   t he   fo rm 

T =(.")r(r) . 
The c o l l i s i o n   o p e r a t o r  

has  a d i f f u s i v i t y  ( 5 )  which may serve as a n   o p e r a t o r   t o   k e e p  a memory. 
I - 

On the   o the r   hand ,  by a p p l y i n g   t o  ( l a ) ,  w e  ob ta in   t he   equa t ion   o f  

evo lu t ion   o f  f . This   equa t ion  may t a k e   t h e   f o l l o w i n g   a l t e r n a t i v e   f o r m s :  
N 

where C is  def ined   by  ( 5 ) ,  and 
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Our problem of t h e  s ta t is t ic ,a l  theory   o f   tu rbulence  i s  t o   f i n d   t h e  

k i n e t i c   e q u a t i o n   ( 4 ) ,   w i t h   t h e   t u r b u l e n t   c o l l i s i o n  (5) to   be   de r ived   on   t he  

b a s i s  of one of t h e   t h r e e   e q u a t i o n s   ( 8 4  - (8c )   o f   f l uc tua t ions .  The t h r e e  

e q u a t i o n s   d i f f e r  by t h e i r   g o v e r n i n g   d i f f e r e n t i a l s  

>+x;, a + L  , A t 3 +L , t t 

s o  t h a t   t h e i r   i n t e g r a t i o n s  w i l l  h a v e   d i f f e r e n t   e v o l u t i o n   o p e r a t o r s ,  as follows: 

U 
f t e e  ' 

A 

The o p e r a t o r  A was in t roduced  by  Weinstock, 1-3 
' f ree i s  t h e   f r e e  

f l i g h t   o r   b a l l i s t i c   p r o p a g a t o r ,   d e s c r i b i n g  a t r a j e c t o r y   t h a t  is  n o t  

per turbed  by t h e  E - f i e l d   f l u c t u a t i o n s ,   a n d  U is  t h e   e x a c t  
A A - 

propagator .  

The d i f f e r e n t i a l   e q u a t i o n   ( 8 a )   h a s   t h e  s i m p l e s t  source ,   bu t  i ts  
A 

o p e r a t o r  A i s  ccmpl ica te .  On t h e   o t h e r   h a n d ,   t h e   i n t e g r a t i o n  o f  t h e  

d i f f e ren t i a l   equa t ion   (8b )   can   be   ach ieved  by the  simplest propagator  

'free o f   f r e e   f l i g h t ,   b u t   t h e   s o u r c e  is complicated by t h e   n o n l i n e a r  

f l u c t u , a t i o n  C , as t h i s  w i l l  genera te  a h i e ra rchy   and   r equ i r e s  a 

c l ~ s u r e . ~   I n   t h e   f o l l o w i n g  w e  choose   (8c) ,   because   the   average   source  C 

is easier than   t he  random source  C , and  the  'propagator  U i s  s impler  

t han   t he   qpe ra to r  A , and is governed  by  the we l l  determined  equat ion 

h. 

- 

-/ A 

+ 

o f   t h e  exact t r a j e c t o r y   i n   t h e  form: 

o r  
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The f l u c t u a t i n g   s o u r c e  -L f g i v e s  a p a i r   c o l l i s i o n :  
N -  5 

t h a t  I s  of the d i f fusLve   t ype   w i th   an   ope ra to r  

(13b) 

r e l a t e d   t o   t h e   d i f f u s i v i t y  (D) . The  two d i f f u s i v i t i e s  are def ined  by:  
d 

% 

L 

D i f f e r e n t  levels  of  approximations  have  been made i n   t h e   l i t e r a t u r e  

on   t he   t heo r i e s   o f   t u rbu lence   i n   f l u ids   and   p l a smas .  As t he   l owes t  

order ,   the   quasi-1inea.r   theory  assumed a p r o p a g a t o r   o f   f r e e   f l i g h t  

and  obtained a resonance  denominator - k - v ,  where G) and k are t h e  

frequency  and  the wavenumber of  a wave 

'free 

".. e 

i n t e r a c t i n g   w i t h   t h e   p a r t i c l e   o f   v e l o c i t y  v. This   resonance was 

fundamenta l   to   the   Landau   damping   in   the   quas i l incar   theory .  The next  

order  approximation  assumed  an  expansion  around U i n   t h e   r e n o r m a l i z a t i o n  

5 

- 

t h e o r y .   I n t e r e s t i n g   a d v a n c e s   i n   t h e o r y   o f   t u r b u l e n c e   h a v e  made use  of 

t h i s   a s sumpt ion .  6Y7 
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With   t he   g roup   s ca l ing ,   t he   de r iva t ion   o f   t he   spec t rum  o f   t u rbu lence  

can   be  Nade o n   t h e   b a s i s  of t h e   k i n e t i c   e q u a t i o n   o f   t h e   s i n g l e t   d i s t r i b u t i o m  

w i t h o u t   t h e   p a i r   d i s t r i b u t i o n .  Ve r e p r e s e n t   t h e   t h r e e   t r a n s p o r t   p r o c e s s e s .  8 

o f   e v o l u t i o n ,   t r a n s p o r t   c o e f f i c i e n t ,   a n d   r e l a x a t i o n ,  by t h r e e   s c a l e d  

g r o u p s   a n d   a n a l y s e   t h e i r   i n t e r a c t i o n s .  The c l o s u r e  i s  obta ined  by t h e  loss 

of memory i n   t h e   p r o c e s s e s   a n d   b y   e x p l o i t i n g   t h e   p r o p e r t y  o f  equasi-  

s t a t i o n a r i t y   i n   t h e   d e g r a d i n g   c o h e r e n c e  of groups. 

The paper i s  organized as fo l lows .   Af t e r  a comparison  between  the 

hydrodynamical   and  the  kinet ic   descr ipt ions  of   the   microdynamical  s ta te  

of   turbulence  (Sec.  II), w e  i n t r o d u c e  a group-sca l ing   procedure   for  

r e p r e s e n t i n g   t h e   t h r e e   t r a n s p o r t   p r o c e s s e s  by the   th ree   g roups   (Sec .  111). 

We f i n d   t h a t   t h e   k i n e t i c   e q u a t i o n   o f   t h e   m a c r o - d i s t r i b u t i o n   h a s  a t u r b u l e n t  

c o l l i s i o n   i n t e g r a l   w i t h  a memory. We i n v e s t i g a t e   t h e  pa i r  i n t e r a c t i o n  and 

t h e   m u l t i p l e   i n t e r a c t i o n   b e t w e e n  a mic ro - f luc tua t ion   and   t he   c lus t e r   o f  

o the r   mic ro - f luc tua t ions   t ha t   fo rm a macro-group.  Various  forms  of memory may 

develop : 

(i) F i r s t ,   t h e   m e m o r y - a p p e a r s   i n   t h e   c o l l i s i o n   t h a t  i s  c o n t r o l l e d  by 

t h e   d i f f u s i v i t y   a c t i n g .  as a n   i n t e g r a l   o p e r a t o r .   T h e n ,   s i n c e   t h e   c o l l e c t i v e  

c o l l i s i o n   i n c l u d e s   t h e   p a i r   c o l l i s i o n   a n d   t h e   m u l t i p l e   c o l l i s i o n   i n   t h e  

fo rm  o f   an   i n t eg ra l   equa t ion ,  a memory ensues.  

( i i )  The Lagrang ian   r ep resen ta t ion   o f  a f u n c t i o n  is made by  means of 

a propagator   t 'hat .  is governed. by a k ine t i c   eq ,ua t ion   w i th  a memory. 

Obvious ly ,   the  memory g roup   ( i )   wh ich   dea l s   w i th   t he   evo lu t ion  of 

t h e   d i s t r i b u t i o n   f u n c t i o n  a t  t h e  time i n s t a n t  t has  a ' l onge r   du ra t ion   t han  

t h e  memory g r o u p   ( i i )   w h i c h   d e a l s   w i t h   t h e   e v o l u t i o n   o f   t h e   p r o p a g a t o r  

D-7 



....._ .... 

f o r   t h e   s h o r t e r   t i m e - i n t e r v a l  t-t' . We s h a l l   n e g l e c t   t h e  memory of t h e  

g r o u p   ( i i ) ,  by j u s t i f y i n g   f r o m   t h e   p r o p e r t y   o f   q u a s i - s t a t i o n a r i t y  

between  the  groups  (Sec.  I V ) .  We s h a l l  show t h a t   t h e   p r o p a g a t o r  is r e l a t e d .  

t o   t he   p robab i l i t y   o f   r e t rog rade   t r ans i t i on ,   and   deve lop  two paral le l  

k i n e t i c   t h e o r i e s  on the   , bas i s   o f   t he   de t a i l ed   dynamics  of t h e   t r a j e c t o r y  

(Sec. V). F i n a l l y ,   t h e   c o l l e c t i v e   c o l l i s i o n  i s  i n v e s t i g a t e d ,  by means  of a 

closure  based  upon  the  memory-loss (Sec. VI ) .  A memory func t ion   appea r s   and  

is c o n t r o l l e d  by the   r e sonance   func t ion   i n  weak turbulence  and by t h e  

d i f f u s i o n   i n   s t r o n g   t u r b u l e n c e ,   y i e l d i n g  two opposite  outcomes: a 

s h i e l d e d   c o l l i s i o n  i n  weak turbulence,   and  an  enhanced  col l is ion i n  

s t rong   tu rbulence   (Sec .   VII ) .  

11. PIICRODYNMIICAL S.TATE OF TURBULENCE ., 

The microdynamical s t a t e  o f   t u rbu lence   can   be   desc r ibed   i n  two ways. 

F i r s t  we can   use   the   Navier -S tokes   equat ions   for   the   incompress ib le   f lu id :  

i s  the   p re s su re   g rad ien t ,   and  may even   i nc lude   o the r   fo rces ,   such  as 

buoyancy  and  random sources .  
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A l t e r n a t i v e l y ,  we can   cons ide r   t he   mic rok ine t i c   equa t ion  ( la) ,  

r ewr i t t en   i n   t he   fo rm  o f   t he   L iouv i l l e   equa t ion :  

[at+ if( t ,x,v) ..... = . 

The evolu t ion   of   the  exact d i s t r i b u t i o n   f u n c t i o n   ? ( t , x , v )  i s  c o n t r o l l e d  by 

f h e   d i f f e r e n t i a l   o p e r a t o r  

” 

The microkine t ic   equa t ion   has   been   used  as a bas i s   o f   de r iv ing   t he  
I 
I A 

BBGK equa t ions  by w r i t i n g   f ( t , x , v )   i n   t h e   f o r m  of a summation  of 
“ 

d - f u n c t i o n s   f o r  N p a r t i c l e s   i n   t h e   p h a s e   s p a c e .   P r e s e n t l y ,   i n  

order   to   secure   the   equiva lence   o f   the  two d e s c r i p t i o n s ,  w e  w r i t e  f 

i n   t he   fo rm  o f  a s i n g l e   d - f u n c t i o n :  

8 

A 

h 

f ( t , x , v )  = S T V  - u ( t , x > l  . 

The d e n s i t y   i n   t h e   i n c o m p r e s s i b l e   f l u i d  i s  taken as  un i ty   he re   w i thou t  

l o s s  of g e n e r a l i t y .  The compress ib le   f lu id   should   have   the   dens i ty  

r ( t , x )  as a f a c t o r   b e f o r e   t h e   6 - f u n c t i o n .  
Y 

By t ak ing   t he  moments, i t  can  be  demonstrated  that   the  

m i c r o k i n e t i c   d e s c r i p t i o n  is  t r a n s f o r m e d   i n t o   t h e   f l u i d   d e s c r i p t i o n  as 

rep resen ted  by the  Navier-Stokes  equat ions.  

By t h e   c o n d i t i o n   o f   i n c o m p r e s s i b i l i t y ,  w e  can write E i n   t h e   f o l l o w i n g  
& 

two,forms:  
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n 4n 

One is  n o n l i n e a r   a n d   t h e   o t h e r  i s  l i n e a r ,  so t h a t   t h e   d i f f e r e n t i a l  

o p e r a t o r  becomes 

w i t h  

The Navier-Stokes  equat ions  (16)   and  the  Liouvi l le   equat ion (18) 

may b e   c a l l e d   t h e   p r i m i t i v e   e q u a t i o n s  i n  the   phys ica l   and   phase   spaces ,  

r e s p e c t i v e l y .  

The k i n e t i c   a p p r o a c h   h a s  several a d v a n t a g e s .   F i r s t ,  i t  t ransforms 

t h e  inhomogeneous  Navier-S  tokes  equation  into  tlle  homogeneous  equation 

(18) and  rendered a l l  n o n l i n e a r  terms, as a r i s i n g   f r o m   t h e   v e l o c i t y  

f u n c t i o n  G(t,:) , i n t o   l i n e a r   o n e s   w i t h   t h e   i n d e p e n d e n t   v a r i a b l e  v , as 

i n  (18) and  (21).  The on ly   non l inea r  term kept  i s  connec ted   wi th  E i n  

Y * 
4 

u 

(18) fo r   desc r ib ing   t he   mode-coup l ings .  It  c a n   u l t i m a t e l y   b e   t r e a t e d  by 

t h e   l i n e a r   e q u a t i o n   o f  s t a t e  (21) .  

Secondly,   the   kinet- ic   approach t rea ts  bot11 t h e  wave-wave i n t e r a c t i o n   a n d  

t h e  wave-particle i n t e r a c t i o n .  T h e  l a t t e r  i s  t h e  mechanism of t h e   l i n e a r  

and  nonlinear  Landau  dampings o r  a m p l i f i c a t i o n s .   T h i s   i n t e r a c t i o n  i s  n o t  

exp l i c i t   i n   t he   hydrodynamica l   app roach .  
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Final ly ,   should  one  propose a genera l   k ine t ic   theory   tha t   combines   bo th  

the  molecular   motion  and  the  turbulent   motion,   the   microkinet ic   equat ion (18) 

can  again serve as a bas i s ,   p rov ided  E includes  both  motions  above,   without  

a p rede te rmined   v i scos i ty .  Our k i n e t i c   t h e o r y   t h a t  is based  upon  (18)  with 

a d i f f e r e n t i a l   o p e r a t o r  (19) is concerned  with  the  turbulent   motion i n  a 

v i s c o u s '   f l u i d  medium. However, f o r   t h e   i n v e s t i g a t i o n   o f   t h e   t u r b u l e n t   c o l l i s i o n s  

by e d d i e s   o f   s i z e   l a r g e r   t h a n   t h e   v i s c o u s   c u t o f f ,   t h e   e f f e c t   o f  Y can   be  

neg lec t ed .  

A 

- 

111. GROUP-SCALING PROCEDURE 

The decomposition  of a f luc tua t ing   func t ion   fn to   an   ave rage   and  a 

f l u c t u a t i o n  i s  t h e   u s u a l   p r a c t i c e   i n   s t a t i s t i c a l   m e t h o d s .  We d e n o t e   t h e   g l o b a l  

average  and t h e  f l u c t u a t i o n  by 

d n/ 

A and 
- 

A = 1 - A  , 

r e s p e c t i v e l y  . 
Not a l l  scales o f   f l uc tua t ions   pe r fo rm  the  same r o l e   i n   t h e   t h r e e  

processes   ment ioned earlier: e v o l u t i o n ,   t r a n s p o r t   c o e f f i c i e n t ,   a n d   r e l a x a t i o n .  

F o r   d e s c r i b i n g   t h e s e   p r o c e s s e s   a n d   t h e i r   c o u p l i n g s   a n a l y t i c a l l y ,  w e  

r e p r e s e n t  them  by t h r e e  scales, u s i n g   t h e   t h r e e   o p e r a t o r s  

t o  fo rm  the   t h ree   g roups ,   o r   s ca l ed   f l uc tua t ions :  

They f l u c t u a t e  a n d   h a v e   t h e i r   d u r a t i o n s   o f   c o r r e l a t i o n  
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, I, 

i n   t h e   i n c r e a s i n g   d e g r e e s  of  incoherence.  This is t h e   p r o p e r t y  of 

d e g r a d a t i o n  of g r o u p   c o h e r e n c e ,   i n s t i t u t i n g  a q u a s i - s t a t i o n r i t y  o f one 

g r o u p   w i t h   r e s p e c t   t o   t h e   o t h e r .  The f i e l d s   ( 2 4 b )  w i l l  a l s o   b e   c a l l e d  

macro-,   micro-  and  submicro-fields,   respectively.  

The  two-scale  averaging  procedure i s  o b t a i n e d   b y   f u r t h e r   s c a l i n g  A 
N 

i n   t o  

A = A O + A '  , 
N 

by u s i n g  A(*) t o  f i n d  

A' A = 0, AOAO = A' , A'A' = 0. 

Subsequent ly ,   the   th ree-sca le   averaging   procedure  is obta ined  by another  

s c a l i n g   o f  A '  i n t o  

' A '  = A  

The averaging  procedures  of many scales may be  denoted  by 

- 
A E <  > , A. =( }o , . A 1  =<>1 , 

where i s  t h e   o p e r a t o r  of t h e   g l o b a l   a v e r a g e ,  A. and AI are t h e  

o p e r a t o r s  of the  accumulated  averages:  

A o = X + A o  , A 1 = A + A o + A  (1) 

D-12 



Although  the  groups Ao and A' may o v e r l a p   i n   t h e i r  wavenumbers 

i n s t a n t a n e o u s l y ,   t h e i r  s t a t i s t i c a l  f u n c t i o n s ,   e . g .   t h e i r   s p e c t r a l   c o n t e n t s  

must l i e  in   adjacent   domains  of   wavenumbers ,  i .e. 

We conclude   tha t   the   g roup-sca l ing   procedure  i s  a s c a l i n g   i n t o   t h e  

three   t ranspor t   p rocesses   ment ioned   above .  It  can   d i s t i ngu i sh   be tween   t he  

two d i f f u s i v i t i e s :   t h e   a s y m p t o t i c   d i f f u s i v i t y  (Dl) and  the  non-asymptotic 

d i f f u s i v i t y  (DO} , a d i s t i n c t i o n   n o t   p r e s e n t   i n   t h e   o n e - s c a l e   a v e r a g i n g  

procedure.  

- 
4 

" 

Recall t h a t   t h e   s p e c t r a l   f u n c t i o n ,   b e i n g   t h e   F o u r i e r   t r a n s f o r m   o f   t h e  

c o r r e l a t i o n   f u n c t i o n   o f   v e l o c i t i e s  a t  two po in t s ,   wou ld ,   i n   t he   one - sca l e  

a v e r a g i n g ,   r e q u i r e  a p a i r   d i s t r i b u t i o n   f u n c t i o n   a n d  i ts  coup l ing   w i th   t he  

s i n g l e t   G i s t r i b u t i o n   f u n c t i o n .   I n   t h e   p r e s e n t   p r o c e d u r e   o f   g r o u p - s c a l i n g ,  

t h e   s i n g l e t   d i s t r i b u t i o n   f u n c t i o n   f o   s u f f i c e s .   I n d e e d ,  f o  g i v e s  u and 

( ( y o ) 2 >  , and  thus   der ives   the   spec t rum of  u- f luc tua t ion ;   by  a d i f f e r e n t i a t i o n  

w i t h   r e s p e c t   t o  k . 

0 
" 

" 

The degrada t ion  of group  coherence (25) i n d i c a t e s  a consecut ive  

q u a s i - s t a t i o n a r i t y  among the  groups,   and i s  an   impor t an t   p rope r ty   fo r  

c l a s s i f y i n g   t h e   i n t e r a c t i o n s   a n d   p l a c i n g   t h e  memory and  the  memory-loss. 
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I V .  TURBULENT COLLISIONS AND MEMORIES 

A .  C o l l 5 s i o n   i n   t h e   K i n e t i c   E q u a t i o n  of f 
0 

By s c a l i n g   t h e   L i o u v i l l e   e q u a t i o n   ( 1 8 )  by  means of Ad and A' , we get 

t he   equa t ions   o f   evo lu t ion  of the   macro-d is t r ibu t ion  

and   the   micro-d is t r ibu t ion  i n  the  form: 

o r ,  e q u i v a l e n t l y ,  

Here 

i s  t h e   c o l l e c t i v e   c o l l i s i o n .  The scheme f a l l s   i n t o   t h e   f r a m e w o r k   t h a t  was 

desc r ibed  by (8c)  and  (8a).  

The d i f f e r e n t i a l   e q u a t i o n   ( 3 1 a )   c a n   b e   i n t e g r a t e d   t o   g i v e  

L 
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The lower l i m i t  of i n t e g r a t i o n  i s  set' t o   z e r o ,   a n d   t h e   i n i t i a l   v a l u e  is 

ignored ,   s ince  

A. L ' ( t )  f ' ( 0 )  = 0 . ( 3 4 )  

Here and   in   the   fo l lowing ,   the   dependence   on  x o r   ( x , v )  is understood. ... " 

The propagator  

t 
A 

U ( t ,   t ' )  = exp - /dT" c ( t ' l )  1 
t '  

sat isf ies  t h e   d i f f e r e n t i a l   e q u a t i o n s  ( 1 2 ) .  

It is  to   be   r emarked   t ha t   t he   d i f f e ren t i a l   equa t ion   (31a )   fo r   t he  

evolu t ion   of  f '  h a s  two s o u r c e s   w r i t t e n   i n   t h e   r i g h t  hand s i d e :  The micro- 

source  -L'fo r e p r e s e n t s  a coupling  between  the  micro-operator L '  and 

the   macro -d i s t r ibu t ion   fo   and   g ives  a f l u c t u a t i n g   c o n t r i b u t i o n   t o   t h e  

s o l u t i o n ,  as s e e n   f r o m   t h e   f i r s t  term i n   t h e   r i g h t  hand s i d e   o f   ( 3 3 ) .  The 

macro-source Co r e p r e s e n t s   t h e   c o l l i s i o n a l   c l u s t e r   i n   t h e  medium i n  which f 

evolues.  Although Co i s  q u a s i - s t a t i o n a r y ,  i t  can   g ive  a random c o n t r i b u t i o n  

th rough   t he   ope ra t ion  A'U as seen  from  the  second term i n   t h e   r i g h t  hand 

0 

Ir 

s i d e .   T h i s  term r e p r e s e n t s   t h e   e f f e c t   o f   t h e   q u a s i - s t a t i o n a r y  Co r i d i n g  on 

t h e  .random traj  ec t o r y .  

I n   o r d e r   t o   d e t e r m i n e   t h e   c o l l e c t i v e   c o l l i s i o n ,  as d e f i n e d  by (32), w e  

m u l t i p l y  (33) by L ' ( t )  and  average,   obtaining:  

t 
C o ( t >  = A o / d t '  L ' ( t )  ^V(t,t') L ' ( t ' )  fo(t ' )  

J 
0 
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+ AoJ,"t' L' ( t )  U ' ( t , t ' )  C o ( t ' )  . 

T h i s   e x p r e s s i o n   c o n s i s t s  of t h e   p a i r   c o l l i s i o n  

and  the m u l t i p l e  c o l l i s i o n   i n   t h e  form: 

t 

d t '  L ' ( t )  U ' ( t , t ' )  C o ( t ' >  = - A. d t '   H o ( t , t ' )   C o ( t ' >  J' 
0 

= - A. Ho * Co , 

Here Ho can   be   i den t i f i ed  as t h e   c o l l e c t i v e   c o l l i s i o n   i n   t h e   k i n e t i c  

equa t ion  of Uo,  i . e .  

f L o ( t )   U o ( t , t ' )  = - A L ' ( t )  U '  ( t , t ' )  f H o ( t , t ' )  , (39) I 0 

as ob ta ined  upon sca l ing   (12a )  by Ao. Note  that   (12b) w i l l  n o t   l e a d   t o  

t h e   d e s i r e d   c o l l i s i o n   a n d  is t h e r e f o r e   n o t   r e l e v a n t   h e r e .  

A s  an o p t i o n   t o  (8a)-, we have   the   equat ion  of e v o l u t i o n  of t h e  

m i c r o - d i s t r i b u t i o n   i n   t h e   f o r m  

( 4  + A' i ) f '  = - L ' f o  , 

and  ob ta in  
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by an in tegra t ion   and   the   use   o f   the   opera tor  fl . It fo l lows:  
A 

co - - - A. L ' f '  
L 

I 

Here A A d e n o t e s   t h e   c o l l i s i o n   o p e r a t o r  
0 

t 

AoA' = A. kt' L ' ( t )  A ( t ,  t ' )  L ' ( t ' )  

w i th  a d i f f u s i v i ' t y  

J,' 
n 

Ao;' = A. d t '   E ' ( t )   / \ ( t , t ' )   E ' ( t ' )  . 
H * 

By r e p l a c i n g  A by U i n  ( 4 2 )  - ( 4 4 ) ,  w e  o b t a i n   t h e  p a i r  c o l l i s i o n  
n * 

C 0 = A ~ A '  { fo 1. , 

wi th  a c o l l i s i o n   o p e r a t o r  

t 

AO&' = A. /o d t '  L '  ( t )   U ( t , t ' )  L' ( t ' )  
A 

( 4 4 )  
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and a d i f f u s i v i t y  

A o B '  = A. I d t '   E ' ( t )  G(t,t') E' ( t ')  .. 
Y 

U a 

-0 

By c o l l e c t i n g   t h e   r e s u l t s  (36) - ( 3 8 ) ,  w e  o b t a i n   t h e   f o l l o w i n g  

r e l a t i o n   b e t w e e n   t h e  two c o l l i s i o n s  Co and i n   t h e   f o r m :  

w i t h  

A. How Co' = A. d t '   H o ( t , t ' )   C o ( t ' )  . J,' (49) 

B .  C o l l i s i o n   i n   t h e   K i n e t i c   E q u a t i o n   o f  Uo 

The d i s t r i b u t i o n   f u n c t i o n  f and   the   p ropagator  U h a v e   t h e i r   e v o l u t i o n s  
A n 

of some resemblance.  By r e p e a t i n g   t h e   c a l c u l a t i o n s   t h a t   h a v e   b e e n  made i n  

Subsec. IVA, we o b t a i n   t h e   c o l l i s i o n s  

HO = AoA"{ Uo } 
= AoA'{ uo } 

of uo, as r e l a t e d  by the   formula :  

€Io = - JI0* H . (51) 

Here li0 and 11 are t h e   c o l l e c t i v e   c o l l i s i o n  and t h e   p a i r   c o l l i s i o n  

i n   t h e   e q u a t i o n   o f   e v o l u t i o n   o f  Uo , i .e.  (39) .  The r e s u l t s  (50a), (50b),  

and  (51) are analogous to (42) ,   (45)   and   (48) ,   respec t ive ly .  
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C. Memories 

We summarise   the  resul ts   obtained  above as fo l lows:  

(i) Pr,imary memory i n  Co 

The k i n e t i c   e q u a t i o n  of fo , in t h e  form (30)   and   w i th   t he   co l l i s ion  

( 4 2 ) ,  carries a primary memory by t h e   c o l l i s i o n   o p e r a t o r  AoA.f j which  can 

b e   w r i t t e n   i n t o  two groups as fo l lows:  

The second  group  forms a c o r r e l a t i o n  A,(bYo{{ ). on i t s  own, but   does 

n o t   h a v e   s u f f i c i e n t  t i m e  to approach i t s  equ i l ib r ium,  by ( 2 5 ) ,  and   t he re fo re  

w i l l  n o t   c o n t r i b u t e   t o  a d i f f u s i v e   c o l l i s i o n .  Hence w e  can write 

as an  approximation,   reducing ( 4 2 )  - ( 4 9 )  i n t o :  

( 5 2 b )  

I with  

D-19 



Hence t h e   e v o l u t i o n  

wi th  t-t' =Z carries a primary memory i n  cO f r o m   t h e   f l u c t u a t i o n s  E '  - 
of scale Tc , s u c h   t h a t  

/ 

by (25) .  

( i i )  Secondary memory 

On t h e   o t h e r   h a n d ,   i f  

t h e   k i n e t i c   e q u a t i o n  

i n  Ho 

w e  w r i t e   U ( t , t ' )  = U(t ) wi th  t-t' = T ,  

has  a c o l l i s i o n   i n t e g r a l   g o v e r n e d  by t h e   c o l l i s i o n   o p e r a t o r  

decomposed i n t o  two p a r t s .  Wi th   t he   cond i t ion   o f   quas i - s t a t iona r i ty  



, 
as a cont inuat ion  of   (56)   f rom  (25) ,   the   second  integral   has  a .matured 

d i f f u s i v i t y ,   w h e r e  we can   pu t  Z+m and  obtain ( ~ ‘ ~ T + Q $ ,  w h i l e   t h e  

f i r s t   i n t e g r a l   h a s   a n   u n m a t u r e d   d i f f u s i v i t y .   S i n c e  T?< 77 , the   secondary 

memory c a r r i e d  by t h e   c o l l i s i o n   i n t e g r a l  Ho i n   t h e   s h o r t  time span T 

can  be  assumed  negl igible  as compared wi th   the   p r imary  memory. 

D.  Resolu t ion  of t he   In t eg ra l   Equa t ions  

From t h e   d e f i n i t i o n  

the   Four i e r   t r ans fo rm of the   convo lu t ion  H * Co is  
- 

and i s  w r i t t e n  as 

Here a change   of   var iab les  T - c  ’ has  been made.  The symbol ’= denotes  

a Four ie r   t ransformat ion .  Hence we t ransform (53c) i n t o :  
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V. KINETIC EQUATION OF THE TRANSITION  PROBABILITY 

A .  P a t h  Dynamics 

The t r a j ec to ry   w i th   wh ich   t he   p ropaga to r   evo lues  i s  desc r ibe (  

t h e   f o l l o w i n g   d i f f e r e n t i a l   e q u a t i o n  of the   pa th   dynamics :  

o r ,   i d e n t i c a l l y ,  by the   sys t em 

w i t h   t h e   c o n d i t i o n s  

4 A 
x ( t )  = x, v ( t )  = v , 
I 4 - - 

w h i c h   s p e c i f y   t h a t  a t  t h e   i n s t a n t   o f  time t , ' t h e   s a i d   t r a j e c t o r y  

p a s s e s  by the   phase   po in t  (x ,v) .  
" 

By i n t e g r a t i n g   ( 6 3 )   a n d   w r i t i n g  t '  = t -x , we f ind   the   dynamica l  

v a r i a b l e s  

c 
/ 

1 " 

and  the   d i sp lacements  
7- 



Now the   pa th   dynamics   (63)   tha t  is d r i v e n  by E has the   d i sp lacements :  
4 

* 

dt: L 

B. R e t r o g r a d e   T r a n s i t i o n   P r o b a b i l i t y  

The Lagrang ian   co r re sponden t   o f   an   Eu le r i an   func t ion   G( t ,x )   can  - 
b e   w r i t t e n   i n   t h e   f o r m  

and   spec i f i e s   t he   va lue   o f   t he   func t ion  as observed by a f l u i d   p a r t i c l e  

coming  from t h e   p o i n t   f ( t  -T >' a t  t h e  time t- , a l o n g   t h e  

t r a j e c t o r y   w h i c h  a t  t h e  time t p a s s e s   t h e   p o i n t  x . The Lagrangian 

f u n c t i o n  can b e   w r i t t e n  more convenient ly  as 

- 
- 

by  means of the   p ropagator  U ( t , t - t )  . It i s  i n   r e a l i t y  a f u n c t i o n  
4 

o f  two s ta tes :  

S ince  ) (-T) i s  a random  funct ion,  w e  can   i n t roduce  a r e t r o g r a d e   t r a n s i t i o n  

p r o b a b i l i t y ,   w r i t t e n   i n   t h e   f o r m :  

- 
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o r ,  b r i e f l y   i n   t h e   n o t a t i o n  

The f i r s t  form expresses t h e  s ta te  t , x  as a cond i t ion   and   can   be   ca l l ed  

a c o n d i t i o n a l   p r o b a b i l i t y .  The second form imp l i e s  a q u a s i - s t a t i o n a r y  

t r a n s i t i o n ,  i .e. p varies more r a p i d l y   w i t h  -7g than   wi th  t , x  

Here 1 is an   i ndependen t   va r i ab le .  

... 

h 

.\ - 
c 

The concep t   o f   t he   r e t rog rade   t r ans i t i on   p robab i l i t y   has   been   i n t roduced  

earlier and i t s  equat ion   of   evolu t ion  was found  to  be of the  Fokker-Planck 

type .  More r e c e n t l y ,  by t h e   u s e  of t h i s   t r a n s i t i o n   p r o b a b i l i t y ,   t h e  

k i n e t i c   e q u a t i o n   o f   t u r b u l e n c e  w a s  found .   In   t he   p re sen t   Sec t ion ,  

9 

1 0  

we s h a l l   d e v o t e   t o   t h e   r e l a t i o n   b e t w e e n   t h e   r e t r o g r a d e   t r a n s i t i o n   p r o b a b i l i t y  

and  the  propagator .  
n 

A s  t he   bas i s   o f   t he   dynamics  of p(-K l), w e  write t h e   e q u a t i o n  of 
.c 

t h e   d e t a i l e d   e v o l u t i o n   i n   t h e   f o r m  

s a t i s f y i n g   t h e   c o n d i t i o n  of no rma l i za t ion :  
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The d i f f e r e n t i a l   o p e r a t o r  is  

- 
I n   o r d e r   f o r   ( 7 1 b )   t o   d e s c r i b e   t h e   m i c r o d y n a m i c a l   s t a t e  of t h e   t u r b u l e n t  

t r a j e c t o r y ,  w e  p u t  

The pa r t i a l  d i f f e r e n t i a l   e q u a t i o n   ( 7 1 a )   h a s  i t s  c h a r a c t e r i s t i c a l  

equa t ions   co inc id ing   w i th  (67 ) .  Evident ly ,  by subs t i t u t ing   (73 )   and  

i n t e g r a t i n g   ( 7 1 a )   w i t h  respect t o  1 , w e  w i l l  r ep roduce   t he   bas i c  

dynamical   equat ions  (67) .  
c 

The Four ie r   t ransforms of (71a)  and  (71b) are: 

and 

wi th  

and 

Here d=3 i n   t h e   t h r e e   d i m e n s i o n a l   s p a c e .  The i n t e g r a t i o n  of  (74a) 

w i th   t he   cond i t ion   (74b)   g ives   t he   so lu t ion  
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It c o n s i s t s  of a b a l l i s t i c   o r b i t   f u n c t i o n  e-%'!' and a f ie ld-dependent  

o r b i t   f u n c t i o n ,   w h i c h  i s  

A 

y(-T,b) - = ~ + p  L k J ( - d ,  " 

i f  -E = 0 .  

C. R e l a t i o n  Between the   P ropaga to r   and   t he   T rans i t i on   P robab i l i t y  

- 
The e v o l u t i o n  of U is governed by a k i n e t i c   e q u a t i o n   w i t h  a 

c o l l i s i o n  . It is t o   b e   n o t e d   t h a t   U ( t , t ' )  , being   an   evolu t ion  
A 

o p e r a t o r ,   o r   p r o p a g a t o r ,   d e s c r i b e s   t h e   e x a c t   t r a j e c t o r y ,   a n d   t h e r e f o r e  

is a f u n c t i o n a l  of  t h e   p a t h  t ( - T )  d u r i n g   t h e   i n t e r v a l   o f  time from t 

t o   t - C   i n   t h e   r e t r o g r a d e   t r a n s i t i o n .   H e w e   t h e   p r o p a g a t o r   c a n   b e   w r i t t e n  

A 

... 

as : 

o r  

(76b) 

J -  L - 
by t h e   u s e  of t h e   t r a n s i t i o n   p r o b a b i l i t y  "p<-t ,I ) . I n  an  analogous  manner, 

w e  have: 
- 
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In this  way,  the  propagator  is  determined  by  the  probability of transition 
A 

P ( - d  1 Y o r  P ( - d )  
- 

D. Lagrangian-Eulerian  Transformation 

The  Lagrangian  function  depends  on  two  states,  and  can  be  written  in 

three forms, by means  of. a functional  as  in (68a), a  propagator  as in 

(G8b),  and now  a  transition  probability  in  the  form: 

It admits  a  Fourier  form: 

A 

U(t,t"r:)  G(t-T)'= (ZX) p(-t,k) c(t-t ,IC), d A  
e 

by  a  Fourier  transformation  with  respect  to 1 . A time  integration 

yields  the  convolution: 
" 

Hence  the combined  Fourier  transformations  with  respe 

(794 

ct  to  both t and 

or 
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Use of  (76b)  has  been made. 

We c o n c l u d e   t h a t   t h e   t r a n s i t i o n   p r o b a b i l i t y   h e l p s  in determining  

the   p ropaga to r   and   t he   func t ion   t o   be   ope ra t ed   upon ,   and   t he reby   e s t ab l i shes  

the  Lagrangian-Euler ian  t ransformation.  

E. Kine t ic   Equat ion  

By sca l ing   (71a )  by x and x , we f ind   t he   sys t em:  

w i t h   t h e   c o l l i s i o n  

The procedure of d e t e r m i n i n g   t h e   c o l l i s i o n  F(-C, R ) is t h e  same 
-a. - 

as t h a t   y i e l d e d   t h e   c o l l i s i o n  H i n   t h e   k i n e t i c   e q u a t i o n  of U . We 

deduce 

- 

- c 

J = J  - H + Y ,  
- 

a n a l y t i c a l l y ,  as was with  (53c)  and  (53d).  We have 
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with 

Now  by  neglecting  the  secondary  memory,  we  can  write  the  approximations: 

- - -c. c 

In  the  following,  the  determination of U and  will  be 
* 

performed  through  and p , so that  we  will  have  no  more  opportunity 
- 

of  dealing  with  the  kinetic  equation (57) of  the  propagator. 

VI. DETERMINATION OF THE COLLISIONS BY MEANS OF THE TRANSITION  PROBABILITY 

The result (79c) has  transformed  the  convolution U Y G of  the  Lagrangian 
A 

form  into  its  Fourier  Eulerian  correspondent.  We  shall  apply  this  result 

to transform  the  convolution H Coy rewritten  as 
- 

by definition (53a). We obtain: 
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- "" . 

.c c 

where 

is a d imens ion le s s   f ac to r   o f  memory, and 

is c a l l e d   t h e  'memory func t ion" ,   de f in ing  a l i f e - t i m e  P11'3 f o r   t h e  

memory. 

Rigorously  speaking,  (A> E 2 .hP' o p e r a t e s  on t h e   b a l l i s t i c  
" ." * 

o r b i t   f u n c t i o n  (15), as  w e l l  a s  on a l l  t h e   d i f f u s i v i t i e s   w h i c h  are 

embedded i n  is and Co . With   the   approximat ion   tha t  (D') varies 

s lowly   wi th  v , a s  is  t r u e   i n   s t r o n g   t u r b u l e n c e ,  w e  can  evaluate   (85b)  

and   ge t  

t: 

.% 

where, by d e f i n i t i o n  (76b), we have 
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d -  * (86b) 
= (2n) p ( - d  c I 

Now it  leaves us   t he   func t ion   p ( -7J ,k )  , and w e  s h a l l   d e t e r m i n e  i t  
- 

, .  u 

by  means  of t h e   F o u r i e r   t r a n s f o r m   o f   t h e   k i n e t i c   e q u a t i o n   o f   t r a n s i t i o n  

in   t he   fo rm 

f rom  (80a) .   The   co l l i s ion  i s  given by the   expres s ion  

as governed by t h e   d i f f u s i v i t y   ( 8 2 c ) .  The i n t e g r a t i o n   w i t h   t h e   c o n d i t i o n  

(74b) g i v e s   t h e   p r o b a b i l i t y  

which w e  s u b s t i t u t e   i n t o  (86b) t o   o b t a i n  

S ince  (g) is c a u s e d   b y   t h e   f i e l d   f l u c t u a t i o n s  
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w e  can   decompose   the   d i f fus iv i ty   in to   components ,  as fo l lows :  

W i t h i n   t h e   a v a i l a b l e  time s p a n t  and   unde r   t he   quas i - s t a t iona r i ty  

c o n d i t i o n  (58), t h e   d i f f u s i v i t y  ( K t  ( ~ + m ) )  r eaches  a matured  development, 

l eav ing   t he   non-asympto t i c   d i f fus iv i t i e s   o f   t he   o rde r   o f   magn i tude :  

The n e g l i g i b l e  (K(l) (t 9 may be  included  under ( K I T  )) f o r   b r e v i t y .  

The procedures   ind ica ted  are t o   c a l c u l a t e   t h e  two d i f f u s i v i t i e s  from 

t h e   p a t h   d y n a m i c s   ( 6 6 b ) ,   t o   s u b s t i t u t e   t h e   r e s u l t s   i n t o   ( 8 9 b ) ,   a n d  

s u b s e q u e n t l y   i n t o  (853 I and (8%) ,  t o   o b t a i n  P , o( a n d M  . The c a l c u l a t i o n s  

are l e n g t h y ,   b u t   c a n   b e   s i m p l i f i e d   i f  w e  choose   t he   h ighes t  power i n  Z 

f o r   r e t a i n i n g   t h e  most  rapid  memory-loss. The r e s u l t s  are c o l l e c t e d  

- 

as fo l lows:  

(a) r e s u l t s   r e l a t i n g   t o  (DI) 
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(b) r e s u l t s   r e l a t i n g  t o  (D') 

wi th  
" 

By a p p l y i n g   t h e s e   r e s u l t s ,  w e  transform  (53b)  and  (53c)  into: 

The las t  equa t ion   can   be   u sed   t o   de r ive  

V I I .  SHIELDING AND ENHANCEMENT OF THE COLLISION 

With  the  approxima.tion of neglec t ing   the   secondary  memory, as s t a t e d  

i n  ( 8 3 ) ,  w e  can  reduce  (93)   into  the  form 

r e w r i t t e n  as 
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by i n t r o d u c i n g   t h e   c o e f f i c i e n t  

where 0;6 L%= are t h e  real  and   imaginary   par t s  of ', 

The r e s u l t  (95a) shows t h a t   t h e   c o l l e c x i v e   c o l l i s i o n   d e p e n d s  on t h e  

f a c t o r  p , which i n  i ts  Surn  depends  on  the memory f u n c t i o n  . This  

func t ion   has  a c o m p l i c a t e   i n t e g r a l  (92). We s h a l l   c a l c u l a t e  it 

approximately by means  of an   i n t e rpo la t ion   wh ich   co r rec t ly   cove r s   t he  

th ree   r eg ions  as dominated by (d , m , and 4)- k. v , separately. , o  

9 --e 

For the   s ake   o f   s imp l i f i ca t ion   o f   wr i t i ng ,  w e  in t roduce   the   f .o l lowing  

f r equenc ie s :  

w i t h   t h e   r a t i o s  

and   the   numer ica l   coef f tc ien ts   found  to   be :  
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F i n a l l y  w e  f i n d   t h e   r e s u l t s ,  as follows: 

We estimate t h a t  7 is o f   t he   o rde r   o f   un i ty ,   and  p is an   i ndex  of t h e  

s t r eng th   o f   t u rbu lence .  The asymptot ic  cases reduce   the   genera l   formula  

i n t o   t h e   f o l l o w i n g :  

(a)   For  weak turbulence ,  w e  have 5 >) , e n t a i l i n g  d,<<a , we 
2 

f i n d  

so t h a t  

caus ing  a s h i e l d e d   c o l l i s i o n .  

(b)   For   s t rong   tu rbulence ,  we have , e n t a i l i n g  aL<< g,, , w e  

f i n d  

so t h a t  

caus ing   an   enhanced   co l l i s ion .  
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The  enhanced  collision  by  the  factor (3 can  be  evaluated  for 

plasma  turbulence  and  fluid  turbulence. As an  illustration,  we  consider 

the  plasma  turbulence  in a st.rong  magnetic  field.  Here  the  electric  field 

fluctuation  excites  the  velocity  fluctuation.  We  found  that  both  spectra 

possess  the k'3 power  law,  that 3' is a constant  quantity,  and  that 
the  Lannor  radius  is a spectral  cutoff.  Since  the  E-fluctuation  drops 

rapidly,  the  macro-electric  energy ((5°)2> will  cover  the  main  body  of  the 

energy-containing  portion  of  the  spectrum  to  become  approximately 

independent  of k . These  parameters  determine a turbulent  Reynolds  number 

Re = ((EO)? a 1'2 

By  definition (96a), we  have 

obtaining 

and 

with 

(101a) 

For high  intensity  turbulence , R is  large,  and  we  reduce  (101a) e 
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The  collective  collision is  increased  above  the  pair  collision  by 

an  amount  proportional  to k-3'2. This  means  that  the  big  eddies  in a bath 

of smaller  ones w i l l  be  more  apt  to  have  an  enhanced  collective  collision. 

An analogous  increase  of  the  effective  diffusivity  of a suspension  of  small 

particles  in  Brownian  movements  is  well  known.  The  application  to  fluid 

turbulence  will  be  given  at a later  opportunity. 

VIII. .SUMMARY AND DISCUSSIONS 

The  point of departure  of  the  statistical  theory of turbulence is the 

description of the  microdynarnical  state  of  turbulence,  either  by a. system  of 

hydrodynamical  equations  in  the  t,x  space,  e.g.  the  Navier-Stokes 

equations  (16),  or  by a consistent  microkinetic  equation  in  the  t,xi,vi  space, 

e.g.  the  Liouville  equation  in  the  form (18). Here  by  enlarging  the 

i 

dimensionality  from  the  passage of the t,xi  space  to  the  t,xi,vi  space,  we 

have  eliminated  the  nonlinearity as connected  with  the  velocity  field, 

but  have  kept  the  nonlinearity  as  connected  with  the  Ei-field from (21). 

If  the  Navier-Stokes  equations  are  further  decomposed  into  Fourier  series, 

the  multi-dimensional  variable u , with fdz (i,k) , has  the  three 
o( 

directions  i=1,2,3  and  all  the  Fourier  modes k running from-- tom . 
The  distribution 

transforms  the  Navier-Stokes  equation  into a corresponding  Liouville 

D-37 



equation  of  the  form: 

(> + L)f 
t = 0 ,  

where 

is  the  differential  operator,  and 3 , are  the  coefficients. 
A q v  

In this  kinetic  representation,  the  enlarged  dimensionality  by  the 

Fourier  transform  renders L deterministic, so that  the  Liouville 

equation  becomes  linear.  Since  the  linear  equation  does  not  distinguish 

between  the  average  and  the  fluctuations,  it  does  not  lend  to  clearly 

express  the  coupling  between  the  modes  in a functional  form. A n  external 

fluctuation  response  assumption  becomes  necessary  for  establishing  the 

physical  and  functional  structure  of L . For  example,  when L and f 

are  decomposed  into  two  components  as 

L = (Ll0 + SL, f= (f)o +Sf, 

(103) can  be  transformed  into 

An iteration  along  the  direct  interaction  approximation  was  to  assume a 

dissipative (L)o of the  Fokker-Planck form. 

By  contrast,  the  nonlinear  Liouville  quation  (la)  retains  the  mode-couplings 

which  are  described  by  the  equations  of  evolution (8a)-(8c). The  form 

(8a)  gives  the  collision  in  the  most  direct  manner  but  requires  the  knowledge 
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L 

of t h e   o p e r a t o r  A w h o s e   p h y s i c a l   s t r u c t u r e   a n d   r e l a t i o n   t o  U can  only 

be ob ta ined   t h rough   o the r  two equat ions,   (8b)   or   (8c)  . I n  the f o m  (8b) , t h e  

memory d i s a p p e a r s   i n   t h e   b a l l i s t i c   o r b i t  and r eappea r s  as a h igh   o rde r  

c o r r e l a t i o n  

A 

caus ing  a h ie ra rchy .   The re fo re  we have  chosen  the  form  (8c)  which  does  not 

p r e s e n t   t h i s   d i f f i c u l t y .  On t h e   c o n t r a r y  i t  e s t a b l i s h e s   t h e   n e c e s s a r y  

r e l a t ion   be tweenA  and  U , t h a n k s   t o   t h e   t r a n s i t i o n   p r o b a b i l i t y .  
.. 4 

For  the  sake of s i m p l i f i c a t i o n  of d i scuss ion   and   abbrev ia t ion ,  w e  

use   the   one-sca le   average  by w r i t i n g :  

- N 

f ( t ,X,V) = 7 ( 1 ) ,  f (t ,x,v) = 5 1 )  , (108a) 
- A  " 

and 

( 1 0 8 ~ )  

from  (22b).  The time d e r i v a t i v e s   a l o n g   t h e   t r a j e c t o r i e s  w i l l  b e   w r i t t e n  as: 

h 4 
dt  _ ~ b ~  + L  , d t  - - =3 + L  . - 

t (108d) 

The ave rage   d i s t r ibu t ion   and   p ropaga to r ,  and t h e i r   f l . u c t u a t i o n s ,  

are governed by t h e   f o l l o w i n g   e q u a t i o n s   o f   e v o l u t i o n :  

a (109a) 
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A U  
dt f(1) = - f(lf) f(1) - C(1)  

rv 

and 

A Y  - 
dtU(l) - - ?(lf) v(1) - H ( 1 ) ,  

with  the  collisions: 

C(1) = -( F(lf) ?(1) > 

(109b) 

(110a) 

(110b) 

(llla) 

The  evolution  of f(1) is  governed  by a variable  source  coupling 

f and  and a deterministic  source -c which  represents  the  cluster  of 

Ir 

N 

fluctuations  in  the  diffusive  medium.  Upon  integrating  (lO{)b),  we  get 

and  subsequently  upon  multiplying  by F(1') and  averaging.  we  find 

the  collision,  as  follows: 

or 

Here 

(113a) 

(113b) 
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.is the p a i r   c o l l i s i o n ,   h a v i n g   a n   o p e r a t o r  

and - H * C  is the   convolu t ion   of  two c o l l i s i o n s :  
" 

I n  terms o f   t h e   c o l l i s i o n   o p e r a t o r  

we can  rewrite (113b) as 

We c o n c l u d e   t h a t   t h e   v a r i a b l e   s o u r c e  and the   de t e rmin i s t i c   sou rces   i n   (109b)  

y i e l d  a c o l l e c t i v e   c o l l i s i o n   w i t h  two components:  one is p r o p o r t i o n a l   t o  

(z ) , and t h e   o t h e r  is p r o p o r t i o n a l   t o  <i)' , as r e  I.ated t o   t h e  

p a i r   c o l l i s i o n  a n d   m u l t i p l e   c o l l i s i o n ,   r e s p e c t i v e l y .  The latter c o n t r i b u t e s  

t o  a s h i e l d i n g  of t h e   c o l l i s i o n   i n  a weak tu rbu lence  as gwerned  by 

the   resonance  of t h e  wave exp [-i( W - 5 . y ) T ]  , o r  t o  an enhancement 

of t h e   c o l l i s i o n   i n  a s t r o n g   t u r b u l e n c e  as governed  by  the  diffusion 

pa rame te r s   o f   r e l axa t ion   f r equenc ie s  0' and mo i n   t h e  memory f u n c t i o n .  
P 

Such o p p o s i t e   e f f e c t s   c a n   f i n d   t h e i r   a n a l o g i e s   i n   t h e   B a l e s c u - L e n a r d   e q u a t i o n s  

in q u i e s c e n t   a n d   i n   t h e   e f f e c t i v e   d i f f u s i v i t y   o f  a syspension  of  

p a r t i c l e s   u n d e r g o i n g  Brownian  movement^,'^ r e s p e c t i v e l y .  More r e c e n t l y ,  

a reversal o f   t h e   e f f e c t  of m u l t i p e   c o l l i s i o n  i n  Brownian  motion  has 

a lso  been  found,   dependent  on t h e  relative scales o f   t he  particles and 

t h e  Brownian  motion. 16-18 
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.-. ." 
1.11 I 

We c a n   g i v e   t h e   f o l l o w i n g   i n t e r p r e t a t i o n .  A c l u s t e r  of l a r g e   s i z e  a may 

move w i t h  a h i g h   v e l o c i t y   a n d   b e   s c a t t e r e d  by t h e  small scale tu rbu lence ,  

i.e. ka> 1. Since  a p a r t   o f   t h e   e d d i e s  w i l l  b e   d i s p l a c e d  o r  sh ie lded   f rom 

p a r t i c i p a t i o n   i n   t h e   c o l l e c t i o n   i n t e r a c t i o n ,   t h e   e f f e c t i v e   d i f f u s i v i t y  

is reduced. On t h e   o t h e r   h a n d ,   i f  ka< 1 , t h e   c l u s t e r  w i l l  p a r t i c i p a t e  

toge the r   w i th   t he   background   edd ie s   t o   con t r ibu te   an   enhanced   co l l i s ion .  

By t h e   g e n e r a l i z a t i o n   t o   t h e   t w o - s c a l e   a v e r a g e s ,  we o b t a i n   t h e   k i n e t i c  

e q u a t i o n   o f   t h e   d i s t r i b u t i o n   f u n c t i o n   f o   w i t h   t h e   c o l l e c t i v e   c o l l i s i o n  

' C o ,  as found i n  (30) and (48). T h i s   c a n   d e r i v e   t h e   t r a n s f e r   f u n c t i o n   f o r  

the  energy-cascade  and  determine  the  spectrum of tu rbu lence   w i thou t   t he  

in t e rmed ia ry  of t h e   p a i r   d i s t r i b u t i o n   f u n c t i o n  (?(1') ;(l)) . 10 
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16. ABSTRACT 
Among  the  transport  functions  which  characterize  the  evolution  of  a  turbulent 

spectrum,  the  cascade  transfer  is  the  only  function  which  describes  the  mode-coupling 
as  the  result  of  the  nonlinear  hydrodynamic  state  of  turbulence.  A  kinetic  theory 
combined  with  a  scaling  procedure  is  developed.  The  transfer  function  governs  the non- 
lintar  mode-coupling  in  strong  turbulence. It is  investigated  by  a  kinetic  theory  of 
turbulence.  The  master  equation  is  consistent  with  the  hydrodynamical  system  that  des- 
cribes  the  micro-dynamical  state  of  turbulence  and  possesses  the  advantages of being 
homogeneous  and  having  fewer  nonlinear  terms.  Since  the  detailed  interactions  between 
the  individual  modes  contain  too  many  minute  details  for  a  statistical  theory,  the 
modes  are  scaled  into  groups  to  decipher  the  governing  transport  processes  and  statis- 
tical  characteristics. An equation  of  vorticity  transport  describes  the  micro-dynami- 
cal  state o f  two-dimensional,  isotropic  and  homogeneous,  geostrophic  turbulence.  By 
group-scaling,  the  equation  of  evolution  of  the  macro-vorticity  is  derived  in  the  form 
of  the  Fokker-Planck  equation  with  memory.  The  micro-dynamical  state  of  turbulence  is 
transformed  into  the  Liouville  equation  to  derive  the  kinetic  equation  of  the  singlet 
distribution  in  turbulence.  The  collision  integral  contains  a  memory,  which  is  ana- 
lyzed  by  considering  the  pair  collision  and  the  multiple  collision.  For  the  inter- 
actions  among  the  groups,  two  other  kinetic  equations  are  develped  in  parallel  for 
the  propagator  and  the  transition  probability. 
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